求导↔积分求导 \leftrightarrow 积分求导↔积分
求导 | 积分 |
---|---|
(1x)′=−1x2\large(\frac{1}{x})'=-\frac{1}{x^2}(x1)′=−x21 | ∫1x2dx=−1x2+c\large\int \frac{1}{x^2}dx=-\frac{1}{x^2}+c∫x21dx=−x21+c |
(lnx)′=1x\large(lnx)'=\frac{1}{x}(lnx)′=x1 | ∫1xdx=∫dxx=ln∣x∣+c\large{\int \frac{1}{x}dx=\int \frac{dx}{x}=ln|x|+c}∫x1dx=∫xdx=ln∣x∣+c |
(x)′=12x\large(\sqrt{x})'=\frac{1}{2\sqrt{x}}(x)′=2x1 | ∫1xdx=2x+c\large\int \frac{1}{\sqrt{x}}dx=2\sqrt{x}+c∫x1dx=2x+c |
(ax)′=axlna\large(a^x)'=a^xlna(ax)′=axlna | ∫axdx=axlna+c\large\int a^xdx= \frac{a^x}{lna}+c∫axdx=lnaax+c |
(sinx)′=cosx\large(sinx)'=cosx(sinx)′=cosx | ∫cosxdx=sinx+c\large\int cosxdx=sinx+c∫cosxdx=sinx+c |
(tanx)′=sec2x\large(tanx)'=sec^2x(tanx)′=sec2x | ∫sec2xdx=tanx+c\large\int sec^2xdx=tanx+c∫sec2xdx=tanx+c |
(secx)′=secxtanx\large(secx)'=secxtanx(secx)′=secxtanx | ∫secxtanxdx=secx+c\large\int secxtanxdx=secx+c∫secxtanxdx=secx+c |
(cosx)′=−sinx\large(cosx)'=-sinx(cosx)′=−sinx | ∫sinxdx=−cosx+c\large\int sinxdx=-cosx+c∫sinxdx=−cosx+c |
(cotx)′=−csc2x\large(cotx)'=-csc^2x(cotx)′=−csc2x | ∫csc2xdx=−cotx+c\large\int csc^2xdx=-cotx+c∫csc2xdx=−cotx+c |
(cscx)′=−csccotx\large(cscx)'=-csccotx(cscx)′=−csccotx | ∫csccotdx=−cscx+c\large\int csccotdx=-cscx+c∫csccotdx=−cscx+c |
tan2x+1=(sinxcosx)2+1=(sin2x+cos2xcos2x)=1cos2x=sec2xtan^2x+1=(\frac{sinx}{cosx})^2+1=(\frac{sin^2x+cos^2x}{cos^2x})=\frac{1}{cos^2x}=sec^2x \\~\\~tan2x+1=(cosxsinx)2+1=(cos2xsin2x+cos2x)=cos2x1=sec2x
不定积分公式【积分∫记得+C】\large 不定积分公式【积分\int记得+C】\\~不定积分公式【积分∫记得+C】
1.∫secxdx=ln∣secx+tanx∣+C1.\large{\int secxdx=ln|secx+tanx|+C }\\~1.∫secxdx=ln∣secx+tanx∣+C
2.∫cscxdx=ln∣cscx−cotx∣+C2. \large{\int cscxdx = ln|cscx-cotx|+C }\\~2.∫cscxdx=ln∣cscx−cotx∣+C
3.∫1a2−x2dx=arcsinxa+C3.\large{ \int \frac{1}{\sqrt{a^2-x^2}}dx=arcsin\frac{x}{a}+C }\\~3.∫a2−x21dx=arcsinax+C
4.∫1a2+x2dx=1aarctanxa+C4. \large{\int \frac{1}{a^2+x^2}dx = \frac{1}{a}arctan\frac{x}{a}+C}\\~4.∫a2+x21dx=a1arctanax+C
5.∫1x2±a2dx=ln∣x+x2±a2∣+C5. \large{\int \frac{1}{\sqrt{x^2 \pm a^2}}dx=ln|x+\sqrt{x^2 \pm a^2}| + C}\\~5.∫x2±a21dx=ln∣x+x2±a2∣+C
6.∫11+exdx=x−ln(1+ex)+C6. \large{\int \frac{1}{1+e^x}dx=x-ln(1+e^x)+C} \\~6.∫1+ex1dx=x−ln(1+ex)+C
7.∫1a2−x2dx=12aln∣a+xa−x∣+C=−∫1x2−a2dx=−12aln∣x+ax−a∣+C7.\large{\int \frac{1}{a^2-x^2}dx=\frac{1}{2a}ln|\frac{a+x}{a-x}|+C}=-\int \frac{1}{x^2-a^2}dx=-\frac{1}{2a}ln|\frac{x+a}{x-a}|+C \\~7.∫a2−x21dx=2a1ln∣a−xa+x∣+C=−∫x2−a21dx=−2a1ln∣x−ax+a∣+C
8.∫x2+a2=x2x2+a2+a22ln(x+x2+a2)+C8. \large{\int \sqrt{x^2+a^2}= \frac{x}{2} \sqrt{x^2+a^2}+\frac{a^2}{2}ln(x+\sqrt{x^2+a^2})+C}\\~8.∫x2+a2=2xx2+a2+2a2ln(x+x2+a2)+C
9.∫x2−a2=x2x2−a2−a22ln(x+x2−a2)+C9. \large{\int \sqrt{x^2-a^2}= \frac{x}{2} \sqrt{x^2-a^2}-\frac{a^2}{2}ln(x+\sqrt{x^2-a^2})+C}\\~9.∫x2−a2=2xx2−a2−2a2ln(x+x2−a2)+C
10.∫a2−x2=x2a2−x2+a22arcsinxa10. \large{\int \sqrt{a^2-x^2}= \frac{x}{2} \sqrt{a^2-x^2}+\frac{a^2}{2}arcsin\frac{x}{a}} \\~\\~\\~10.∫a2−x2=2xa2−x2+2a2arcsinax
因为有常数C,同一积分可有多种答案,可求导验证正确性:因为有常数C,同一积分可有多种答案,可求导验证正确性:因为有常数C,同一积分可有多种答案,可求导验证正确性:
1.(ln∣secx+tanx∣)′=1secx+tanx(secxtanx+sec2x)=secx(tanx+secx)secx+tanx=secx1.\large(ln|secx+tanx|)'=\frac{1}{secx+tanx}(secxtanx+sec^2x)=\frac{secx(tanx+secx)}{secx+tanx}=secx \\~1.(ln∣secx+tanx∣)′=secx+tanx1(secxtanx+sec2x)=secx+tanxsecx(tanx+secx)=secx
2.(ln∣cscx−cotx∣)′=1cscx−cotx(−cscxcotx+csc2x)=cscx(−cotx+cscx)cscx−cotx=cscx2.\large(ln|cscx-cotx|)'=\frac{1}{cscx-cotx}(-cscxcotx+csc^2x)=\frac{cscx(-cotx+cscx)}{cscx-cotx}=cscx \\~2.(ln∣cscx−cotx∣)′=cscx−cotx1(−cscxcotx+csc2x)=cscx−cotxcscx(−cotx+cscx)=cscx
3.(arcsinxa)′=11−(ax)2∗1a=1a2−x23.\large(arcsin\frac{x}{a})'=\frac{1}{\sqrt{1-(\frac{a}{x})^2}}*\frac{1}{a}=\frac{1}{\sqrt{a^2-x^2}} \\~3.(arcsinax)′=1−(xa)21∗a1=a2−x21
4.(1aarctanxa)′=1a∗11+(xa)2=1a2+x24.\large(\frac{1}{a}arctan\frac{x}{a})'=\frac{1}{a}*\frac{1}{1+(\frac{x}{a})^2}=\frac{1}{a^2+x^2} \\~4.(a1arctanax)′=a1∗1+(ax)21=a2+x21
5.(ln∣x+x2±a2∣)′=1x+x2±a2∗(1+12x2±a2∗2x)=1x+x2±a2∗(x2±a2+xx2±a2)=1x2±a25.\large{(ln|x+\sqrt{x^2 \pm a^2}| )'= \frac{1}{x+\sqrt{x^2 \pm a^2}}*(1+\frac{1}{2\sqrt{x^2 \pm a^2}}*2x)=\frac{1}{x+\sqrt{x^2 \pm a^2}}*(\frac{\sqrt{x^2 \pm a^2 }+x}{\sqrt{x^2 \pm a^2}})=\frac{1}{\sqrt{x^2 \pm a^2}} }\\~5.(ln∣x+x2±a2∣)′=x+x2±a21∗(1+2x2±a21∗2x)=x+x2±a21∗(x2±a2x2±a2+x)=x2±a21
6.(x−ln(1+ex)+C)′=1−11+ex∗ex=1+ex−11+ex=11+ex6.\large{(x-ln(1+e^x)+C)'=1-\frac{1}{1+e^x}*e^x=\frac{1+e^x-1}{1+e^x}=\frac{1}{1+e^x} } \\~6.(x−ln(1+ex)+C)′=1−1+ex1∗ex=1+ex1+ex−1=1+ex1
∫11+exdx多种积分解法:\large{\int \frac{1}{1+e^x}dx}多种积分解法:\\~∫1+ex1dx多种积分解法:
凑微分:∫11+exdx=∫1+ex−ex1+exdx=∫1−11+exd(1+ex)=x−ln(1+ex)+C凑微分:\large{\int \frac{1}{1+e^x}dx}=\large{\int \frac{1+e^x-e^x}{1+e^x}dx}=\large{\int 1-\frac{1}{1+e^x}d(1+e^x)}=x-ln(1+e^x)+C \\~凑微分:∫1+ex1dx=∫1+ex1+ex−exdx=∫1−1+ex1d(1+ex)=x−ln(1+ex)+C
提公因子:∫11+exdx=∫1ex(e−x+1)dx=∫e−xe−x+1dx=−∫1e−x+1(e−x+1)=−ln(1+e−x)+C=−ln(ex+1ex)+C=−(ln(ex+1)−lnex)+C=x−ln(1+ex)+C提公因子:\large{\int \frac{1}{1+e^x}dx=\int \frac{1}{e^x(e^{-x}+1)}dx= \int \frac{e^{-x}}{e^{-x}+1}dx}=-\int \frac{1}{e^{-x}+1}(e^{-x}+1)=-ln(1+e^{-x})+C \\ =-ln(\frac{e^x+1}{e^{x}})+C=-(ln(e^x+1)-lne^x)+C=x-ln(1+e^x)+C \\~提公因子:∫1+ex1dx=∫ex(e−x+1)1dx=∫e−x+1e−xdx=−∫e−x+11(e−x+1)=−ln(1+e−x)+C=−ln(exex+1)+C=−(ln(ex+1)−lnex)+C=x−ln(1+ex)+C
换元法:∫11+exdx=∫exex(1+ex)dx=∫1ex(1+ex)dex令t=ex∫1t(1+t)dt=∫1t−11+tdt=lnex−ln(1+ex)+C=x−ln(1+ex)+C换元法:\large\int \frac{1}{1+e^x}dx=\int \frac{e^x}{e^x(1+e^x)}dx=\int \frac{1 }{e^x(1+e^x)}de^x ~~\frac{令t=e^x}{}~~ \int \frac{1}{t(1+t)}dt = \int \frac{1}{t}-\frac{1}{1+t}dt \\ =lne^x-ln(1+e^x)+C=x-ln(1+e^x)+C \\~换元法:∫1+ex1dx=∫ex(1+ex)exdx=∫ex(1+ex)1dex 令t=ex ∫t(1+t)1dt=∫t1−1+t1dt=lnex−ln(1+ex)+C=x−ln(1+ex)+C
下一篇:树状数组的原理和区间和