已知{x=tety=2t+t2\left\{\begin{matrix}x=te^t\\y=2t+t^2\end{matrix}\right.{x=tety=2t+t2,求dydx\dfrac{dy}{dx}dxdy
解:
dxdt=(t+1)et\qquad\dfrac{dx}{dt}=(t+1)e^tdtdx=(t+1)et
dydt=2+2t\qquad\dfrac{dy}{dt}=2+2tdtdy=2+2t
dydx=dydtdxdt=2+2t(t+1)et=2et\qquad\dfrac{dy}{dx}=\dfrac{\quad\frac{dy}{dt}\quad}{\frac{dx}{dt}}=\dfrac{2+2t}{(t+1)e^t}=\dfrac{2}{e^t}dxdy=dtdxdtdy=(t+1)et2+2t=et2
已知{x=3t2+2teysint−y+1=0\left\{\begin{matrix}x=3t^2+2t\\e^y\sin t-y+1=0\end{matrix}\right.{x=3t2+2teysint−y+1=0,求dydx\dfrac{dy}{dx}dxdy
解:
dxdt=6t+2\qquad\dfrac{dx}{dt}=6t+2dtdx=6t+2
\qquad对eysint−y+1=0e^y\sin t-y+1=0eysint−y+1=0两边同时对ttt求导得
eyy′sint+eycost−y′=0\qquad e^yy'\sin t+e^y\cos t-y'=0eyy′sint+eycost−y′=0
\qquad移项得(eysint−1)y′=−eycost(e^y\sin t-1)y'=-e^y\cos t(eysint−1)y′=−eycost
dydt=y′=eycost1−eysint\qquad \dfrac{dy}{dt}=y'=\dfrac{e^y\cos t}{1-e^y\sin t}dtdy=y′=1−eysinteycost
dydx=dydtdxdt=eycost(6t+2)(1−eysint)\qquad\dfrac{dy}{dx}=\dfrac{\quad\frac{dy}{dt}\quad}{\frac{dx}{dt}}=\dfrac{e^y\cos t}{(6t+2)(1-e^y\sin t)}dxdy=dtdxdtdy=(6t+2)(1−eysint)eycost
这题不仅考了参数方程求导,还考了隐函数求导。
上一篇:彻底搞懂nodejs事件循环
下一篇:第三章 多维随机变量及其分布