微分中值定理之罗尔中值定理
函数f(x)f(x)f(x)在[0,1][0,1][0,1]上连续,在(0,1)(0,1)(0,1)内可导,f(0)=e,f(1)=1f(0)=e,f(1)=1f(0)=e,f(1)=1,
求证:∃ξ∈(0,1)\exist\xi \in (0,1)∃ξ∈(0,1)使得f(ξ)+f′(ξ)=0f(\xi)+f'(\xi)=0f(ξ)+f′(ξ)=0。
解:
\qquad令F(x)=exf(x)F(x)=e^xf(x)F(x)=exf(x)
F(0)=e0f(0)=e,F(1)=e1f(1)=e\qquad F(0)=e^0f(0)=e,F(1)=e^1f(1)=eF(0)=e0f(0)=e,F(1)=e1f(1)=e
∵F(x)\qquad \because F(x)∵F(x)在[0,1][0,1][0,1]上连续,在(0,1)(0,1)(0,1)内可导,F(0)=F(1)=eF(0)=F(1)=eF(0)=F(1)=e
∴\qquad \therefore∴由罗尔定理,∃ξ∈(0,1)\exist \xi \in(0,1)∃ξ∈(0,1),使F′(ξ)=0F'(\xi)=0F′(ξ)=0
\qquad即eξf(ξ)+eξf′(ξ)=0e^\xi f(\xi)+e^\xi f'(\xi)=0eξf(ξ)+eξf′(ξ)=0
∵\qquad \because∵当ξ∈(0,1)\xi\in (0,1)ξ∈(0,1)时,eξ>0e^\xi >0eξ>0
∴f(ξ)+f′(ξ)=0\qquad \therefore f(\xi)+f'(\xi)=0∴f(ξ)+f′(ξ)=0
\qquad得证∃ξ∈(0,1)\exist\xi \in (0,1)∃ξ∈(0,1)使得f(ξ)+f′(ξ)=0f(\xi)+f'(\xi)=0f(ξ)+f′(ξ)=0
函数f(x)f(x)f(x)在[0,1][0,1][0,1]上连续,在(0,1)(0,1)(0,1)内可导,f(1)=0f(1)=0f(1)=0,
求证:∃ξ∈(0,1)\exist\xi \in (0,1)∃ξ∈(0,1)使得2f(ξ)+ξf′(ξ)=02f(\xi)+\xi f'(\xi)=02f(ξ)+ξf′(ξ)=0。
解:
\qquad令F(x)=x2f(x)F(x)=x^2f(x)F(x)=x2f(x)
F(0)=0×f(0)=0,F(1)=1×f(1)=0\qquad F(0)=0\times f(0)=0,F(1)=1\times f(1)=0F(0)=0×f(0)=0,F(1)=1×f(1)=0
∵F(x)\qquad \because F(x)∵F(x)在[0,1][0,1][0,1]上连续,在(0,1)(0,1)(0,1)内可导,F(0)=F(1)=0F(0)=F(1)=0F(0)=F(1)=0
∴\qquad \therefore∴由罗尔定理,∃ξ∈(0,1)\exist \xi\in(0,1)∃ξ∈(0,1),使F′(ξ)=0F'(\xi)=0F′(ξ)=0
\qquad即2ξf(ξ)+ξ2f′(ξ)=02\xi f(\xi)+\xi^2f'(\xi)=02ξf(ξ)+ξ2f′(ξ)=0
∵\qquad \because∵当ξ∈(0,1)\xi\in(0,1)ξ∈(0,1)时,ξ>0\xi>0ξ>0
∴2f(ξ)+ξf′(ξ)=0\qquad \therefore 2f(\xi)+\xi f'(\xi)=0∴2f(ξ)+ξf′(ξ)=0
\qquad得证∃ξ∈(0,1)\exist\xi \in (0,1)∃ξ∈(0,1)使得2f(ξ)+ξf′(ξ)=02f(\xi)+\xi f'(\xi)=02f(ξ)+ξf′(ξ)=0
当题目给出f(x)f(x)f(x)的若干个值f(x1),f(x2)…f(x_1),f(x_2)\dotsf(x1),f(x2)…,并求证一个由ξ,f(ξ),f′(ξ)\xi,f(\xi),f'(\xi)ξ,f(ξ),f′(ξ)组成的式子为零时,我们可以考虑构造一个函数F(x)F(x)F(x),根据罗尔定理得出∃ξ∈(a,b)\exist \xi\in(a,b)∃ξ∈(a,b)使得F′(ξ)=0F'(\xi)=0F′(ξ)=0,然后整理一下式子即可得证。