在本系列内容中我们会对JUC做一个系统的学习,本片将会介绍JUC的并发工具线程池
我们会分为以下几部分进行介绍:
我们在这一小节简单介绍一下线程池
首先我们先来介绍线程池的产生背景:
我们给出一张线程池基本图:
我们在这一小节根据线程池基本图来自定义一个线程池
我们先来介绍一下拒绝策略接口:
我们给出拒绝策略接口代码:
// 拒绝策略
// 这里采用T来代表接收任务类型,可能是Runnable类型也可能是其他类型线程
// 这里的reject就是抽象方法,我们后续直接采用Lambda表达式重新构造即可
// BlockingQueue是阻塞队列,我们在后续创建;task是任务,我们直接传入即可
@FunctionalInterface
interface RejectPolicy{void reject(BlockingQueue queue,T task);
}
我们来介绍一下任务队列:
我们给出任务队列代码:
class BlockingQueue{//阻塞队列,存放任务private Deque queue = new ArrayDeque<>();//队列的最大容量private int capacity;//锁private ReentrantLock lock = new ReentrantLock();//生产者条件变量private Condition fullWaitSet = lock.newCondition();//消费者条件变量private Condition emptyWaitSet = lock.newCondition();//构造方法public BlockingQueue(int capacity) {this.capacity = capacity;}//超时阻塞获取public T poll(long timeout, TimeUnit unit){lock.lock();//将时间转换为纳秒long nanoTime = unit.toNanos(timeout);try{while(queue.size() == 0){try {//等待超时依旧没有获取,返回nullif(nanoTime <= 0){return null;}//awaitNanos方法返回的是剩余时间nanoTime = emptyWaitSet.awaitNanos(nanoTime);} catch (InterruptedException e) {e.printStackTrace();}}T t = queue.pollFirst();fullWaitSet.signal();return t;}finally {lock.unlock();}}//阻塞获取public T take(){lock.lock();try{while(queue.size() == 0){try {emptyWaitSet.await();} catch (InterruptedException e) {e.printStackTrace();}}T t = queue.pollFirst();fullWaitSet.signal();return t;}finally {lock.unlock();}}//阻塞添加public void put(T t){lock.lock();try{while (queue.size() == capacity){try {System.out.println(Thread.currentThread().toString() + "等待加入任务队列:" + t.toString());fullWaitSet.await();} catch (InterruptedException e) {e.printStackTrace();}}System.out.println(Thread.currentThread().toString() + "加入任务队列:" + t.toString());queue.addLast(t);emptyWaitSet.signal();}finally {lock.unlock();}}//超时阻塞添加public boolean offer(T t,long timeout,TimeUnit timeUnit){lock.lock();try{long nanoTime = timeUnit.toNanos(timeout);while (queue.size() == capacity){try {if(nanoTime <= 0){System.out.println("等待超时,加入失败:" + t);return false;}System.out.println(Thread.currentThread().toString() + "等待加入任务队列:" + t.toString());nanoTime = fullWaitSet.awaitNanos(nanoTime);} catch (InterruptedException e) {e.printStackTrace();}}System.out.println(Thread.currentThread().toString() + "加入任务队列:" + t.toString());queue.addLast(t);emptyWaitSet.signal();return true;}finally {lock.unlock();}}// 获得当前任务队列长度public int size(){lock.lock();try{return queue.size();}finally{lock.unlock();}}// 从形参接收拒绝策略的put方法public void tryPut(RejectPolicy rejectPolicy,T task){lock.lock();try{if(queue.size() == capacity){rejectPolicy.reject(this,task);}else{System.out.println("加入任务队列:" + task);queue.addLast(task);emptyWaitSet.signal();}}finally {lock.unlock();}}
}
我们来介绍一下线程池:
我们给出线程池代码:
class ThreadPool{//阻塞队列BlockingQueue taskQue;//线程集合HashSet workers = new HashSet<>();//拒绝策略private RejectPolicy rejectPolicy;//构造方法public ThreadPool(int coreSize,long timeout,TimeUnit timeUnit,int queueCapacity,RejectPolicy rejectPolicy){this.coreSize = coreSize;this.timeout = timeout;this.timeUnit = timeUnit;this.rejectPolicy = rejectPolicy;taskQue = new BlockingQueue(queueCapacity);}//线程数private int coreSize;//任务超时时间private long timeout;//时间单元private TimeUnit timeUnit;//线程池的执行方法public void execute(Runnable task){//当线程数大于等于coreSize的时候,将任务放入阻塞队列//当线程数小于coreSize的时候,新建一个Worker放入workers//注意workers类不是线程安全的, 需要加锁synchronized (workers){if(workers.size() >= coreSize){//死等//带超时等待//让调用者放弃执行任务//让调用者抛出异常//让调用者自己执行任务taskQue.tryPut(rejectPolicy,task);}else {Worker worker = new Worker(task);System.out.println(Thread.currentThread().toString() + "新增worker:" + worker + ",task:" + task);workers.add(worker);worker.start();}}}//工作类class Worker extends Thread{private Runnable task;public Worker(Runnable task){this.task = task;}@Overridepublic void run() {//巧妙的判断while(task != null || (task = taskQue.poll(timeout,timeUnit)) != null){try{System.out.println(Thread.currentThread().toString() + "正在执行:" + task);task.run();}catch (Exception e){}finally {task = null;}}synchronized (workers){System.out.println(Thread.currentThread().toString() + "worker被移除:" + this.toString());workers.remove(this);}}}
}
我们给出自定义线程池的测试代码:
public class ThreadPoolTest {public static void main(String[] args) {// 注意:这里最后传入的参数,也就是下面一大溜的方法就是拒绝策略接口,我们可以任意选择,此外put和offer是已经封装的方法ThreadPool threadPool = new ThreadPool(1, 1000, TimeUnit.MILLISECONDS, 1, (queue,task)->{//死等
// queue.put(task);//带超时等待
// queue.offer(task, 1500, TimeUnit.MILLISECONDS);//让调用者放弃任务执行
// System.out.println("放弃:" + task);//让调用者抛出异常
// throw new RuntimeException("任务执行失败" + task);//让调用者自己执行任务task.run();});for (int i = 0; i <3; i++) {int j = i;threadPool.execute(()->{try {System.out.println(Thread.currentThread().toString() + "执行任务:" + j);Thread.sleep(1000L);} catch (InterruptedException e) {e.printStackTrace();}});}}
}
我们在这一小节将介绍一种新的模式WorkThread
首先我们给出Worker Thread的基本定义:
我们给出一种具体的解释:
首先我们先来展示没有使用Worker Thread所出现的问题:
/*例如我们采用newFixedThreadPool创建一个具有规定2的线程的线程池
如果我们不为他们分配职责,就有可能导致两个线程都处于等待状态而造成饥饿现象- 两个工人是同一个线程池中的两个线程 - 他们要做的事情是:为客人点餐和到后厨做菜,这是两个阶段的工作 - 客人点餐:必须先点完餐,等菜做好,上菜,在此期间处理点餐的工人必须等待 - 后厨做菜:做菜
- 比如工人A 处理了点餐任务,接下来它要等着 工人B 把菜做好,然后上菜
- 但现在同时来了两个客人,这个时候工人A 和工人B 都去处理点餐了,这时没人做饭了,造成饥饿*//*实际代码展示*/public class TestDeadLock {static final List MENU = Arrays.asList("地三鲜", "宫保鸡丁", "辣子鸡丁", "烤鸡翅");static Random RANDOM = new Random();static String cooking() {return MENU.get(RANDOM.nextInt(MENU.size()));}public static void main(String[] args) {// 我们这里创建一个固定线程池,里面涵盖两个线程ExecutorService executorService = Executors.newFixedThreadPool(2);executorService.execute(() -> {log.debug("处理点餐...");Future f = executorService.submit(() -> {log.debug("做菜");return cooking();});try {log.debug("上菜: {}", f.get());} catch (InterruptedException | ExecutionException e) {e.printStackTrace();}});// 开启下面代码即两人同时负责点餐/*executorService.execute(() -> {log.debug("处理点餐...");Future f = executorService.submit(() -> {log.debug("做菜");return cooking();});try {log.debug("上菜: {}", f.get());} catch (InterruptedException | ExecutionException e) {e.printStackTrace();}});*/}
}/*正确运行*/17:21:27.883 c.TestDeadLock [pool-1-thread-1] - 处理点餐...
17:21:27.891 c.TestDeadLock [pool-1-thread-2] - 做菜
17:21:27.891 c.TestDeadLock [pool-1-thread-1] - 上菜: 烤鸡翅/*代码注释后运行*/17:08:41.339 c.TestDeadLock [pool-1-thread-2] - 处理点餐...
17:08:41.339 c.TestDeadLock [pool-1-thread-1] - 处理点餐...
如果想要解除之前的饥饿现象,正确的方法就是采用Worker Thread模式为他们分配角色,让他们只专属于一份工作:
/*代码展示*/public class TestDeadLock {static final List MENU = Arrays.asList("地三鲜", "宫保鸡丁", "辣子鸡丁", "烤鸡翅");static Random RANDOM = new Random();static String cooking() {return MENU.get(RANDOM.nextInt(MENU.size()));}public static void main(String[] args) {// 我们这里创建两个线程池,分别包含一个线程,用于不同的分工ExecutorService waiterPool = Executors.newFixedThreadPool(1);ExecutorService cookPool = Executors.newFixedThreadPool(1);// 我们这里采用waiterPool线程池来处理点餐,采用cookPool来处理做菜waiterPool.execute(() -> {log.debug("处理点餐...");Future f = cookPool.submit(() -> {log.debug("做菜");return cooking();});try {log.debug("上菜: {}", f.get());} catch (InterruptedException | ExecutionException e) {e.printStackTrace();}});// 无论多少线程他们都会正常运行waiterPool.execute(() -> {log.debug("处理点餐...");Future f = cookPool.submit(() -> {log.debug("做菜");return cooking();});try {log.debug("上菜: {}", f.get());} catch (InterruptedException | ExecutionException e) {e.printStackTrace();}});}
}/*结果展示*/17:25:14.626 c.TestDeadLock [pool-1-thread-1] - 处理点餐...
17:25:14.630 c.TestDeadLock [pool-2-thread-1] - 做菜
17:25:14.631 c.TestDeadLock [pool-1-thread-1] - 上菜: 地三鲜
17:25:14.632 c.TestDeadLock [pool-1-thread-1] - 处理点餐...
17:25:14.632 c.TestDeadLock [pool-2-thread-1] - 做菜
17:25:14.632 c.TestDeadLock [pool-1-thread-1] - 上菜: 辣子鸡丁
最后我们来思考一下线程池大小的问题:
我们给出两种形式下的线程池大小规范:
/*
通常采用 `cpu 核数 + 1` 能够实现最优的 CPU 利用率
+1 是保证当线程由于页缺失故障(操作系统)或其它原因导致暂停时,额外的这个线程就能顶上去,保证 CPU 时钟周期不被浪费
*/
/*
CPU 不总是处于繁忙状态,例如,当你执行业务计算时,这时候会使用 CPU 资源
但当你执行 I/O 操作时、远程 RPC 调用时,包括进行数据库操作时,这时候 CPU 就闲下来了,你可以利用多线程提高它的利用率。 经验公式如下 `线程数 = 核数 * 期望 CPU 利用率 * 总时间(CPU计算时间+等待时间) / CPU 计算时间` 例如 4 核 CPU 计算时间是 50% ,其它等待时间是 50%,期望 cpu 被 100% 利用,套用公式 `4 * 100% * 100% / 50% = 8` 例如 4 核 CPU 计算时间是 10% ,其它等待时间是 90%,期望 cpu 被 100% 利用,套用公式 `4 * 100% * 100% / 10% = 40`
*/
下面我们来介绍JDK中为我们提供的线程池设计
首先我们要知道JDK为我们提供的线程池都是通过Executors的方法来构造的
我们给出继承图:
其中我们所使用的线程创造类分为两种:
我们首先给出线程池状态的构造规则:
我们给出具体线程状态:
状态名 | 高3位 | 接收新任务 | 处理阻塞队列任务 | 说明 |
---|---|---|---|---|
RUNNING | 111 | Y | Y | 正常运行 |
SHUTDOWN | 000 | N | Y | 不会接收新任务,但会处理阻塞队列剩余 任务 |
STOP | 001 | N | N | 会中断正在执行的任务,并抛弃阻塞队列 任务 |
TIDYING | 010 | 任务全执行完毕,活动线程为 0 即将进入 终结 | ||
TERMINATED | 011 | 终结状态 |
从数字上比较,TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING (因为RUNNING为负数)
我们给出线程池中ThreadPoolExecutor最完善的构造方法的参数展示:
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler)
我们对上述各种类型进行一一介绍:
我们首先给出工作方式展示图:
线程池c-2,m=3
阻塞队列
核心线程1
核心线程2
救急线程1
任务1
任务2
size=2
任务3
任务4
我们对此进行简单解释:
线程池中刚开始没有线程,当一个任务提交给线程池后,线程池会创建一个新线程来执行任务。
当线程数达到 corePoolSize 并没有线程空闲,这时再加入任务,新加的任务会被加入workQueue 队列排 队,直到有空闲的线程。
如果队列选择了有界队列,那么任务超过了队列大小时,会创建 maximumPoolSize - corePoolSize 数目的线程来救急。
如果线程到达 maximumPoolSize 仍然有新任务这时会执行拒绝策略。
当高峰过去后,超过corePoolSize 的救急线程如果一段时间没有任务做,需要结束节省资源,这个时间由keepAliveTime和unit来控制。
拒绝策略 jdk 提供了 4 种实现,其它著名框架也提供了实现:
我们首先来介绍一下newFixedThreadPool:
我们给出构造方法:
/*我们正常调用的方法*/// 我们只需要提供线程数量nThreads,就会创建一个大小为nThreads的线程池
// 下面会返回一个相应配置的线程池,这里的核心线程和最大线程都是nThreads,就意味着没有救急线程,同时也不需要设置保存时间
public static ExecutorService newFixedThreadPool(int nThreads) {return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue());
}/*底层实现方法*/// 这和我们前面的构造方法是完全相同的
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue workQueue) {this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,Executors.defaultThreadFactory(), defaultHandler);
}/*默认工厂以及默认构造线程的方法*/// 对应上述构造方法中的默认工厂以及线程构造,主要是控制了命名以及优先级并设置不为守护线程等内容
DefaultThreadFactory() {SecurityManager s = System.getSecurityManager();group = (s != null) ? s.getThreadGroup() :Thread.currentThread().getThreadGroup();namePrefix = "pool-" +poolNumber.getAndIncrement() +"-thread-";
}public Thread newThread(Runnable r) {Thread t = new Thread(group, r,namePrefix + threadNumber.getAndIncrement(),0);if (t.isDaemon())t.setDaemon(false);if (t.getPriority() != Thread.NORM_PRIORITY)t.setPriority(Thread.NORM_PRIORITY);return t;
}/*默认拒绝策略:抛出异常*/private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();
我们最后给出具体特点:
我们首先来介绍一下newCachedThreadPool:
我们给出构造方法:
/*调用方法*/public static ExecutorService newCachedThreadPool() {return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue());
}/*测试代码*/SynchronousQueue integers = new SynchronousQueue<>();
new Thread(() -> {try {log.debug("putting {} ", 1);integers.put(1);log.debug("{} putted...", 1);log.debug("putting...{} ", 2);integers.put(2);log.debug("{} putted...", 2);} catch (InterruptedException e) {e.printStackTrace();}
},"t1").start();
sleep(1);
new Thread(() -> {try {log.debug("taking {}", 1);integers.take();} catch (InterruptedException e) {e.printStackTrace();}
},"t2").start();
sleep(1);
new Thread(() -> {try {log.debug("taking {}", 2);integers.take();} catch (InterruptedException e) {e.printStackTrace();}
},"t3").start();/*输出结果*/11:48:15.500 c.TestSynchronousQueue [t1] - putting 1
11:48:16.500 c.TestSynchronousQueue [t2] - taking 1
11:48:16.500 c.TestSynchronousQueue [t1] - 1 putted...
11:48:16.500 c.TestSynchronousQueue [t1] - putting...2
11:48:17.502 c.TestSynchronousQueue [t3] - taking 2
11:48:17.503 c.TestSynchronousQueue [t1] - 2 putted...
我们给出newCachedThreadPool的特点:
我们先来简单介绍一下newSingleThreadExecutor:
我们给出构造方法:
/*构造方法*/public static ExecutorService newSingleThreadExecutor() {return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue()));
}
我们给出newSingleThreadExecutor的特点:
下面我们来介绍多种提交任务的执行方法:
/*介绍*/// 执行任务
void execute(Runnable command);// 提交任务 task,用返回值 Future 获得任务执行结果
Future submit(Callable task);// 提交 tasks 中所有任务
List> invokeAll(Collection extends Callable> tasks)throws InterruptedException;// 提交 tasks 中所有任务,带超时时间,时间超时后,会放弃执行后面的任务
List> invokeAll(Collection extends Callable> tasks,long timeout, TimeUnit unit)throws InterruptedException;// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消
T invokeAny(Collection extends Callable> tasks)throws InterruptedException, ExecutionException;// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消,带超时时间
T invokeAny(Collection extends Callable> tasks,long timeout, TimeUnit unit)throws InterruptedException, ExecutionException, TimeoutException;/*submit*/// 测试代码
private static void method1(ExecutorService pool) throws InterruptedException, ExecutionException {Future future = pool.submit(() -> {log.debug("running");Thread.sleep(1000);return "ok";});log.debug("{}", future.get());
}
public static void main(String[] args) throws ExecutionException, InterruptedException {ExecutorService pool = Executors.newFixedThreadPool(1);method1(pool);
}// 结果
18:36:58.033 c.TestSubmit [pool-1-thread-1] - running
18:36:59.034 c.TestSubmit [main] - ok/*invokeAll*/// 测试代码
private static void method2(ExecutorService pool) throws InterruptedException {List> futures = pool.invokeAll(Arrays.asList(() -> {log.debug("begin");Thread.sleep(1000);return "1";},() -> {log.debug("begin");Thread.sleep(500);return "2";},() -> {log.debug("begin");Thread.sleep(2000);return "3";}));futures.forEach( f -> {try {log.debug("{}", f.get());} catch (InterruptedException | ExecutionException e) {e.printStackTrace();}});
}
public static void main(String[] args) throws ExecutionException, InterruptedException {ExecutorService pool = Executors.newFixedThreadPool(1);method2(pool);
}// 结果
19:33:16.530 c.TestSubmit [pool-1-thread-1] - begin
19:33:17.530 c.TestSubmit [pool-1-thread-1] - begin
19:33:18.040 c.TestSubmit [pool-1-thread-1] - begin
19:33:20.051 c.TestSubmit [main] - 1
19:33:20.051 c.TestSubmit [main] - 2
19:33:20.051 c.TestSubmit [main] - 3/*invokeAny*/
private static void method3(ExecutorService pool) throws InterruptedException, ExecutionException {String result = pool.invokeAny(Arrays.asList(() -> {log.debug("begin 1");Thread.sleep(1000);log.debug("end 1");return "1";},() -> {log.debug("begin 2");Thread.sleep(500);log.debug("end 2");return "2";},() -> {log.debug("begin 3");Thread.sleep(2000);log.debug("end 3");return "3";}));log.debug("{}", result);
}
public static void main(String[] args) throws ExecutionException, InterruptedException {ExecutorService pool = Executors.newFixedThreadPool(3);//ExecutorService pool = Executors.newFixedThreadPool(1);method3(pool);
}// 结果
19:44:46.314 c.TestSubmit [pool-1-thread-1] - begin 1
19:44:46.314 c.TestSubmit [pool-1-thread-3] - begin 3
19:44:46.314 c.TestSubmit [pool-1-thread-2] - begin 2
19:44:46.817 c.TestSubmit [pool-1-thread-2] - end 2
19:44:46.817 c.TestSubmit [main] - 219:47:16.063 c.TestSubmit [pool-1-thread-1] - begin 1
19:47:17.063 c.TestSubmit [pool-1-thread-1] - end 1
19:47:17.063 c.TestSubmit [pool-1-thread-1] - begin 2
19:47:17.063 c.TestSubmit [main] - 1
我们给出关闭线程池的多种方法:
/*SHUTDOWN*//*
线程池状态变为 SHUTDOWN
- 不会接收新任务
- 但已提交任务会执行完
- 此方法不会阻塞调用线程的执行
*/
void shutdown();public void shutdown() {final ReentrantLock mainLock = this.mainLock;mainLock.lock();try {checkShutdownAccess();// 修改线程池状态advanceRunState(SHUTDOWN);// 仅会打断空闲线程interruptIdleWorkers();onShutdown(); // 扩展点 ScheduledThreadPoolExecutor} finally {mainLock.unlock();}// 尝试终结(没有运行的线程可以立刻终结,如果还有运行的线程也不会等)tryTerminate();
}/*shutdownNow*//*
线程池状态变为 STOP
- 不会接收新任务
- 会将队列中的任务返回
- 并用 interrupt 的方式中断正在执行的任务
*/
List shutdownNow();public List shutdownNow() {List tasks;final ReentrantLock mainLock = this.mainLock;mainLock.lock();try {checkShutdownAccess();// 修改线程池状态advanceRunState(STOP);// 打断所有线程interruptWorkers();// 获取队列中剩余任务tasks = drainQueue();} finally {mainLock.unlock();}// 尝试终结tryTerminate();return tasks;
}/*其他方法*/// 不在 RUNNING 状态的线程池,此方法就返回 true
boolean isShutdown();
// 线程池状态是否是 TERMINATED
boolean isTerminated();
// 调用 shutdown 后,由于调用线程并不会等待所有任务运行结束,因此如果它想在线程池 TERMINATED 后做些事情,可以利用此方法等待
// 一般task是Callable类型的时候不用此方法,因为futureTask.get方法自带等待功能。
boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;/*测试shutdown、shutdownNow、awaitTermination*/// 代码
@Slf4j(topic = "c.TestShutDown")
public class TestShutDown {public static void main(String[] args) throws ExecutionException, InterruptedException {ExecutorService pool = Executors.newFixedThreadPool(2);Future result1 = pool.submit(() -> {log.debug("task 1 running...");Thread.sleep(1000);log.debug("task 1 finish...");return 1;});Future result2 = pool.submit(() -> {log.debug("task 2 running...");Thread.sleep(1000);log.debug("task 2 finish...");return 2;});Future result3 = pool.submit(() -> {log.debug("task 3 running...");Thread.sleep(1000);log.debug("task 3 finish...");return 3;});log.debug("shutdown");pool.shutdown();// pool.awaitTermination(3, TimeUnit.SECONDS);// List runnables = pool.shutdownNow();// log.debug("other.... {}" , runnables);}
}// 结果
#shutdown依旧会执行剩下的任务
20:09:13.285 c.TestShutDown [main] - shutdown
20:09:13.285 c.TestShutDown [pool-1-thread-1] - task 1 running...
20:09:13.285 c.TestShutDown [pool-1-thread-2] - task 2 running...
20:09:14.293 c.TestShutDown [pool-1-thread-2] - task 2 finish...
20:09:14.293 c.TestShutDown [pool-1-thread-1] - task 1 finish...
20:09:14.293 c.TestShutDown [pool-1-thread-2] - task 3 running...
20:09:15.303 c.TestShutDown [pool-1-thread-2] - task 3 finish...
#shutdownNow立刻停止所有任务
20:11:11.750 c.TestShutDown [main] - shutdown
20:11:11.750 c.TestShutDown [pool-1-thread-1] - task 1 running...
20:11:11.750 c.TestShutDown [pool-1-thread-2] - task 2 running...
20:11:11.750 c.TestShutDown [main] - other.... [java.util.concurrent.FutureTask@66d33a]
在『任务调度线程池』功能加入之前(JDK1.3),可以使用 java.util.Timer 来实现定时功能
Timer 的优点在于简单易用,但由于所有任务都是由同一个线程来调度,因此所有任务都是串行执行的
同一时间只能有一个任务在执行,前一个 任务的延迟或异常都将会影响到之后的任务。
我们首先首先给出Timer的使用:
/*Timer使用代码*/public static void main(String[] args) {Timer timer = new Timer();TimerTask task1 = new TimerTask() {@Overridepublic void run() {log.debug("task 1");sleep(2);}};TimerTask task2 = new TimerTask() {@Overridepublic void run() {log.debug("task 2");}};// 使用 timer 添加两个任务,希望它们都在 1s 后执行// 但由于 timer 内只有一个线程来顺序执行队列中的任务,因此『任务1』的延时,影响了『任务2』的执行timer.schedule(task1, 1000);timer.schedule(task2, 1000);
}/*结果*/20:46:09.444 c.TestTimer [main] - start...
20:46:10.447 c.TestTimer [Timer-0] - task 1
20:46:12.448 c.TestTimer [Timer-0] - task 2
我们再给出 ScheduledExecutorService 的改写格式:
/*ScheduledExecutorService代码书写*/ScheduledExecutorService executor = Executors.newScheduledThreadPool(2);
// 添加两个任务,希望它们都在 1s 后执行
executor.schedule(() -> {System.out.println("任务1,执行时间:" + new Date());try { Thread.sleep(2000); } catch (InterruptedException e) { }
}, 1000, TimeUnit.MILLISECONDS);
executor.schedule(() -> {System.out.println("任务2,执行时间:" + new Date());
}, 1000, TimeUnit.MILLISECONDS);/*结果*/任务1,执行时间:Thu Jan 03 12:45:17 CST 2019
任务2,执行时间:Thu Jan 03 12:45:17 CST 2019
我们对其再进行更细节的测试分析:
/*scheduleAtFixedRate:任务执行时间超过了间隔时间*/// 代码
ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
log.debug("start...");
pool.scheduleAtFixedRate(() -> {log.debug("running...");sleep(2);
}, 1, 1, TimeUnit.SECONDS);// 结果
21:44:30.311 c.TestTimer [main] - start...
21:44:31.360 c.TestTimer [pool-1-thread-1] - running...
21:44:33.361 c.TestTimer [pool-1-thread-1] - running...
21:44:35.362 c.TestTimer [pool-1-thread-1] - running...
21:44:37.362 c.TestTimer [pool-1-thread-1] - running.../*scheduleWithFixedDelay:在任务完成的基础上,设置时间间隔*/// 代码
ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
log.debug("start...");
pool.scheduleWithFixedDelay(()-> {log.debug("running...");sleep(2);
}, 1, 1, TimeUnit.SECONDS);// 结果
21:40:55.078 c.TestTimer [main] - start...
21:40:56.140 c.TestTimer [pool-1-thread-1] - running...
21:40:59.143 c.TestTimer [pool-1-thread-1] - running...
21:41:02.145 c.TestTimer [pool-1-thread-1] - running...
21:41:05.147 c.TestTimer [pool-1-thread-1] - running...
我们给出ScheduledExecutorService适用范围:
我们针对异常在之前一般会选择抛出或者无视,但这里我们给出应对方法:
/*try-catch*/// 代码
ExecutorService pool = Executors.newFixedThreadPool(1);
pool.submit(() -> {try {log.debug("task1");int i = 1 / 0;} catch (Exception e) {log.error("error:", e);}
});// 结果
21:59:04.558 c.TestTimer [pool-1-thread-1] - task1
21:59:04.562 c.TestTimer [pool-1-thread-1] - error:
java.lang.ArithmeticException: / by zero at cn.itcast.n8.TestTimer.lambda$main$0(TestTimer.java:28) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) /*Future返回*/// 我们在之前的提交任务中已经学习了submit等提交方法,当发异常时,这类返回对象Future将会返回异常信息// 代码
ExecutorService pool = Executors.newFixedThreadPool(1);
Future f = pool.submit(() -> {log.debug("task1");int i = 1 / 0;return true;
});
log.debug("result:{}", f.get());// 结果
21:54:58.208 c.TestTimer [pool-1-thread-1] - task1
Exception in thread "main" java.util.concurrent.ExecutionException:
java.lang.ArithmeticException: / by zero at java.util.concurrent.FutureTask.report(FutureTask.java:122) at java.util.concurrent.FutureTask.get(FutureTask.java:192) at cn.itcast.n8.TestTimer.main(TestTimer.java:31)
Caused by: java.lang.ArithmeticException: / by zero at cn.itcast.n8.TestTimer.lambda$main$0(TestTimer.java:28) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748)
我们进行一个简单的实例展示:
/*任务:在每周四下午六点执行方法*//* 代码 */// 获得当前时间
LocalDateTime now = LocalDateTime.now();
// 获取本周四 18:00:00.000
LocalDateTime thursday = now.with(DayOfWeek.THURSDAY).withHour(18).withMinute(0).withSecond(0).withNano(0);
// 如果当前时间已经超过 本周四 18:00:00.000, 那么找下周四 18:00:00.000
if(now.compareTo(thursday) >= 0) {thursday = thursday.plusWeeks(1);
}
// 计算时间差,即延时执行时间
long initialDelay = Duration.between(now, thursday).toMillis();
// 计算间隔时间,即 1 周的毫秒值
long oneWeek = 7 * 24 * 3600 * 1000;
ScheduledExecutorService executor = Executors.newScheduledThreadPool(2);
System.out.println("开始时间:" + new Date());
executor.scheduleAtFixedRate(() -> {System.out.println("执行时间:" + new Date());
}, initialDelay, oneWeek, TimeUnit.MILLISECONDS);
下面我们来介绍Tomcat中所使用的线程池
我们首先给出Tomcat线程运作的展示图:
Connector->NIO EndPoint
Executor
有读
有读
socketProcessor
socketProcessor
LimitLatch
Acceptor
SocketChannel 1
SocketChannel 2
Poller
worker1
worker2
我们针对上述图给出对应解释:
我们需要注意Tomcat针对原本JDK提供的线程池进行了部分修改:
Tomcat 线程池扩展了 ThreadPoolExecutor,行为稍有不同
我们给出Tomcat相关配置信息:
配置项 | 默认值 | 说明 |
---|---|---|
acceptorThreadCount | 1 | acceptor 线程数量 |
pollerThreadCount | 1 | poller 线程数量 |
minSpareThreads | 10 | 核心线程数,即 corePoolSize |
maxThreads | 200 | 最大线程数,即 maximumPoolSize |
executor | - | Executor 名称,用来引用下面的 Executor |
配置项 | 默认值 | 说明 |
---|---|---|
threadPriority | 5 | 线程优先级 |
deamon | true | 是否守护线程 |
minSpareThreads | 25 | 核心线程数,即corePoolSize |
maxThreads | 200 | 最大线程数,即 maximumPoolSize |
maxIdleTime | 60000 | 线程生存时间,单位是毫秒,默认值即 1 分钟 |
maxQueueSize | Integer.MAX_VALUE | 队列长度 |
prestartminSpareThreads | false | 核心线程是否在服务器启动时启动 |
这一小节我们来介绍Fork/Join线程池思想
我们首先来简单介绍一下Fork/Join:
我们来介绍一下任务拆分:
我们给出Fork/Join的一些思想:
Fork/Join 在分治的基础上加入了多线程,可以把每个任务的分解和合并交给不同的线程来完成,进一步提升了运算效率
Fork/Join 默认会创建与 cpu 核心数大小相同的线程池
我们给出一个简单的应用题材来展示Fork/Join:
我们给出对应代码:
/*求和代码*/public static void main(String[] args) {ForkJoinPool pool = new ForkJoinPool(4);System.out.println(pool.invoke(new AddTask1(5)));
}@Slf4j(topic = "c.AddTask")
class AddTask1 extends RecursiveTask {int n;public AddTask1(int n) {this.n = n;}@Overridepublic String toString() {return "{" + n + '}';}@Overrideprotected Integer compute() {// 如果 n 已经为 1,可以求得结果了if (n == 1) {log.debug("join() {}", n);return n;}// 将任务进行拆分(fork)AddTask1 t1 = new AddTask1(n - 1);t1.fork();log.debug("fork() {} + {}", n, t1);// 合并(join)结果int result = n + t1.join();log.debug("join() {} + {} = {}", n, t1, result);return result;}
}/*求和结果*/[ForkJoinPool-1-worker-0] - fork() 2 + {1}
[ForkJoinPool-1-worker-1] - fork() 5 + {4}
[ForkJoinPool-1-worker-0] - join() 1
[ForkJoinPool-1-worker-0] - join() 2 + {1} = 3
[ForkJoinPool-1-worker-2] - fork() 4 + {3}
[ForkJoinPool-1-worker-3] - fork() 3 + {2}
[ForkJoinPool-1-worker-3] - join() 3 + {2} = 6
[ForkJoinPool-1-worker-2] - join() 4 + {3} = 10
[ForkJoinPool-1-worker-1] - join() 5 + {4} = 15
15 /*改进代码*/public static void main(String[] args) {ForkJoinPool pool = new ForkJoinPool(4);System.out.println(pool.invoke(new AddTask3(1, 10)));
}class AddTask3 extends RecursiveTask {int begin;int end;public AddTask3(int begin, int end) {this.begin = begin;this.end = end;}@Overridepublic String toString() {return "{" + begin + "," + end + '}';}@Overrideprotected Integer compute() {// 5, 5if (begin == end) {log.debug("join() {}", begin);return begin;}// 4, 5if (end - begin == 1) {log.debug("join() {} + {} = {}", begin, end, end + begin);return end + begin;}// 1 5int mid = (end + begin) / 2; // 3AddTask3 t1 = new AddTask3(begin, mid); // 1,3t1.fork();AddTask3 t2 = new AddTask3(mid + 1, end); // 4,5t2.fork();log.debug("fork() {} + {} = ?", t1, t2);int result = t1.join() + t2.join();log.debug("join() {} + {} = {}", t1, t2, result);return result;}
}/*改进结果*/[ForkJoinPool-1-worker-0] - join() 1 + 2 = 3
[ForkJoinPool-1-worker-3] - join() 4 + 5 = 9
[ForkJoinPool-1-worker-0] - join() 3
[ForkJoinPool-1-worker-1] - fork() {1,3} + {4,5} = ?
[ForkJoinPool-1-worker-2] - fork() {1,2} + {3,3} = ?
[ForkJoinPool-1-worker-2] - join() {1,2} + {3,3} = 6
[ForkJoinPool-1-worker-1] - join() {1,3} + {4,5} = 15
15