机器学习笔记 十八:基于3种方法的随机森林模型分析房屋参数重要性
创始人
2024-01-21 00:57:27
0

这里写自定义目录标题

      • 1. 探索性数据分析
        • 1.1 数据集分割(训练集、测试集)
        • 1.2 模型拟合
      • 2. 特征重要性比较
        • 2.1 Gini Importance
        • 2.2 Permutation Importance
        • 2.3 Boruta
      • 3. 特征比较
        • 3.1 Gini Importance
        • 3.2 Permutation Importance
        • 3.3 Boruta
      • 4. 模型比较

将机器学习笔记 十六:基于Boruta算法的随机森林(RF)特征重要性评估与本篇结合,对比分析。

1. 探索性数据分析

输入参数: id、date、bedrooms、bathrooms、sqft_living、sqft_lot、floors、waterfront、view、condition、grade、sqft_above、sqft_basement、yr_built、yr_renovated、zipcode、lat、long、sqft_living15、sqft_lot15、
输出参数: price

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVC
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
from sklearn.model_selection import RandomizedSearchCV
from sklearn.metrics import accuracy_score
from collections import defaultdict
from sklearn.metrics import r2_scoreimport syssys.path.insert(0, 'boruta_py-master/boruta')
from boruta import BorutaPysys.path.insert(0, 'random-forest-importances-master/src')
from rfpimp import *%matplotlib inlinehouse = pd.read_csv("C:/Users/Administrator/Desktop/kc_house_data.csv")
# 查看数据是否有空
print(house.isnull().any())
# 检查类型
print(house.dtypes)
# 删除id和date两列数据,因为他们不会使用
house = house.drop(['id', 'date'],axis=1)

用散点图展示数据之间的相关性:

with sns.plotting_context("notebook",font_scale=2.5):g = sns.pairplot(house[['sqft_lot','sqft_above','price','sqft_living','bedrooms']], hue='bedrooms', palette='tab20',size=6)
g.set(xticklabels=[]);

在这里插入图片描述
绘制参数热图(相关性分析):

corr = house.corr()mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = Truef, ax = plt.subplots(figsize=(10, 8))
cmap = sns.diverging_palette(220, 10, as_cmap=True)sns.heatmap(corr, mask=mask, cmap=cmap, center=0,square=True, linewidths=0.5)

在这里插入图片描述

1.1 数据集分割(训练集、测试集)

df_train, df_test = train_test_split(house, test_size=0.20,random_state=42)
df_train = df_train[list(house.columns)]
df_test = df_test[list(house.columns)]X_train, y_train = df_train.drop('price',axis=1), df_train['price']
X_test, y_test = df_test.drop('price',axis=1), df_test['price']X_train.shape,y_train.shape,X_test.shape,y_test.shape

((17290, 18), (17290,), (4323, 18), (4323,))

1.2 模型拟合

def predictions (rf,X_test,y_test):# Make predictions on test datapredictions = rf.predict(X_test)# Performance metricserrors = abs(predictions - y_test)print('Metrics for Random Forest Regressor')print('Average absolute error:', round(np.mean(errors), 2), 'degrees.')# Calculate mean absolute percentage error (MAPE)mape = np.mean(100 * (errors / y_test))# Compare to baselinebaseline_mape=np.mean(y_test)improvement_baseline = 100 * abs(mape - baseline_mape) / baseline_mapeprint('Improvement over baseline:', round(improvement_baseline, 2), '%.')# Calculate and display accuracyaccuracy = 100 - mapeprint('Accuracy:', round(accuracy, 2), '%.')print('R2 score:',r2_score(predictions,y_test))
rf_reg = RandomForestRegressor(n_estimators=200,min_samples_leaf=2,n_jobs=-1,oob_score=True,random_state=42)
rf_reg.fit(X_train, y_train)predictions(rf_reg,X_test,y_test)

Metrics for Random Forest Regressor
Average absolute error: 72704.15 degrees.
Improvement over baseline: 100.0 %.
Accuracy: 86.88 %.
R2 score: 0.8381720745711922

2. 特征重要性比较

2.1 Gini Importance

features = np.array(X_train.columns)
imps_gini=rf_reg.feature_importances_
std_gini = np.std([tree.feature_importances_ for tree in rf_reg.estimators_],axis=0)
indices_gini = np.argsort(imps_gini)plt.title('Feature Importances')
plt.barh(range(len(indices_gini)), imps_gini[indices_gini], yerr=std_gini[indices_gini],color='black', align='center')
plt.yticks(range(len(indices_gini)), features[indices_gini])
plt.xlabel('Gini Importance')
plt.show()

在这里插入图片描述

2.2 Permutation Importance

def permutation_importances(rf, X_train, y_train, metric):baseline = metric(rf, X_train, y_train)imp = []std = []for col in X_train.columns:tmp=[]for i in range(10):save = X_train[col].copy()X_train[col] = np.random.permutation(X_train[col]) # permutation():按照给定列表生成一个打乱后的随机列表m = metric(rf, X_train, y_train)X_train[col] = savetmp.append(m)imp.append(baseline - np.mean(tmp))std.append(np.std(tmp))return np.array(imp),np.array(std)
np.random.seed(10)
imps_perm, std_perm = permutation_importances(rf_reg, X_train, y_train,oob_regression_r2_score)features = np.array(X_train.columns)
indices_perm = np.argsort(imps_perm)plt.title('Feature Importances')
plt.barh(range(len(indices_perm)), imps_perm[indices_perm], yerr=std_perm[indices_perm],color='black', align='center')
plt.yticks(range(len(indices_perm)), features[indices_perm])
plt.xlabel('Permutation Importance')
plt.show()

在这里插入图片描述
可以看出lat的重要性升高

2.3 Boruta

forest_reg = RandomForestRegressor(min_samples_leaf=2,n_jobs=-1,oob_score=True,random_state=42)
feat_selector_reg = BorutaPy(forest_reg, verbose=2,max_iter=50)
np.random.seed(10)import time
start = time.time()
feat_selector_reg.fit(X_train.values, y_train.values)
end = time.time()
print(end - start)

Iteration: 1 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 2 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 3 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 4 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 5 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 6 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 7 / 50
Confirmed: 0
Tentative: 18
Rejected: 0
Iteration: 8 / 50
Confirmed: 13
Tentative: 0
Rejected: 5

BorutaPy finished running.
Iteration: 9 / 50
Confirmed: 13
Tentative: 0
Rejected: 5
837.3257942199707

print('Confirmed: \n',list(np.array(X_train.columns)[feat_selector_reg.ranking_==1]))
print('\nTentatives: \n',list(np.array(X_train.columns)[feat_selector_reg.ranking_==2]))
print('\nRejected: \n',list(np.array(X_train.columns)[feat_selector_reg.ranking_>=3]))

Confirmed:
[‘bathrooms’, ‘sqft_living’, ‘sqft_lot’, ‘waterfront’, ‘view’, ‘grade’, ‘sqft_above’, ‘yr_built’, ‘zipcode’, ‘lat’, ‘long’, ‘sqft_living15’, ‘sqft_lot15’]

Tentatives:
[‘sqft_basement’]

Rejected:
[‘bedrooms’, ‘floors’, ‘condition’, ‘yr_renovated’]


3. 特征比较

3.1 Gini Importance

X_train_gini_reg=X_train[['grade','sqft_living','lat','long']]
X_test_gini_reg=X_test[['grade','sqft_living','lat','long']]rf_gini_reg = RandomForestRegressor(n_estimators=200,min_samples_leaf=2,n_jobs=-1,oob_score=True,random_state=42)
rf_gini_reg.fit(X_train_gini_reg, y_train)

3.2 Permutation Importance

X_train_perm_reg=X_train.drop(['bedrooms','yr_renovated','floors','sqft_basement','condition','bathrooms'],axis=1)
X_test_perm_reg=X_test.drop(['bedrooms','yr_renovated','floors','sqft_basement','condition','bathrooms'],axis=1)rf_perm_reg = RandomForestRegressor(n_estimators=200,min_samples_leaf=2,n_jobs=-1,oob_score=True,random_state=42)
rf_perm_reg.fit(X_train_perm_reg, y_train)

3.3 Boruta

X_train_boruta_reg=X_train.drop(['bedrooms','floors','condition','yr_renovated'],axis=1)
X_test_boruta_reg=X_test.drop(['bedrooms','floors','condition','yr_renovated'],axis=1)rf_boruta_reg = RandomForestRegressor(n_estimators=200,min_samples_leaf=2,n_jobs=-1,oob_score=True,random_state=42)
rf_boruta_reg.fit(X_train_boruta_reg, y_train)

4. 模型比较

print('******************* Original Model ***********************')
print('\n')
predictions(rf_reg,X_test,y_test)print ('\n')print('**** Feature selection based on Gini Importance ****')
print('\n')
predictions(rf_gini_reg,X_test_gini_reg,y_test)print ('\n')print('**** Feature selection based on Permutation Importance *****')
print('\n')
predictions(rf_perm_reg,X_test_perm_reg,y_test)print ('\n')print('*********** Feature selection based on Boruta **************')
print('\n')
predictions(rf_boruta_reg,X_test_boruta_reg,y_test)

******************* Original Model ***********************

Metrics for Random Forest Regressor
Average absolute error: 72704.15 degrees.
Improvement over baseline: 100.0 %.
Accuracy: 86.88 %.
R2 score: 0.8381720745711922

**** Feature selection based on Gini Importance ****

Metrics for Random Forest Regressor
Average absolute error: 81288.41 degrees.
Improvement over baseline: 100.0 %.
Accuracy: 85.56 %.
R2 score: 0.8052584664901095

**** Feature selection based on Permutation Importance *****

Metrics for Random Forest Regressor
Average absolute error: 72741.67 degrees.
Improvement over baseline: 100.0 %.
Accuracy: 86.77 %.
R2 score: 0.8477802122659206

*********** Feature selection based on Boruta **************

Metrics for Random Forest Regressor
Average absolute error: 73254.05 degrees.
Improvement over baseline: 100.0 %.
Accuracy: 86.75 %.
R2 score: 0.8388239891237698

Permutation Importance对于R2的计算是比较好的模型,Permutation Importance和Boruta都是比较好的方法。

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...