不定积分24个基本公式整理
创始人
2024-06-03 19:56:35
0

1. 原函数

首先认识一下原函数:
原函数的定义:  如果区间I上,可导函数F(x)的导函数为f'(x),即对任一x∈I都有 F'(x)=f(x) 或 dF(x)=f(x) dx 那么函数F(x)就称为f(x)(或 f(x) dx)在区间 I 内的一个原函数。

原函数存在定理:如果函数f(x)在区间 I 上连续,那么在区间 I 上存在可导函数F(x),使对任一x∈I都有 F'(x)=f(x).

简单地说:连续函数一定有原函数。

在区间 I 上,函数f(x)的带有任意常数项的的原函数称为f(x)( f(x)dx ) 在区间 I 上的不定积分,记作 ∫ f(x)dx . 其中 记号 ∫ 称为 积分号,f(x)称为被积函数 f(x)dx 称为被积表达式,x 称为积分变量。

 2. 常见的积分公式

 

3. 不定积分的性质

设函数f(x)及g(x)的原函数存在,则∫ [ f(x) ± g(x)] dx= ∫ f(x) dx ± ∫ g(x) dx 。

总结:

①加减积分可以分开加减积分;

②设函数f(x)及g(x)的原函数存在,k为非零常数,则  ∫ k f(x) dx=k ∫ f(x) dx  记:非零常数 乘以积分,可以把常数拿到外面乘不定积分。

4. 换元法

4.1 第一类换元法 

设f(u)具有原函数,u=φ(x)可导,则有换元公式,这也叫做凑微分法。

 

4.2  第二类换元积分法

设x=ψ(t)是单调的可导函数,并且 ψ'(t)≠0,又设f[ψ(t)]ψ'(t)具有原函数,则有换元公式:

 这里,

 4.3 三种常见的换元公式用法

 4.4 分部积分法

假设函数u=u(x)及v=v(x)具有连续导数,则两个函数乘积的导数公式为 (uv)'=u'v+uv',移项,得: u v'=(u v)'-u' v  对这个等式两边求积分  ∫ u v' dx=u v- ∫ u' v dx 称为分部积分公式  分部积分法的积分顺序:反对幂指三,其含义是 从后面考虑容易积分的,先对那个积分。积分顺序:先三角函数再对数函数和指数函数其次,幂函数再次,对数函数,最后才是反三角函数。

5. 有理函数的积分

5.1 复合函数积分利用换元法

 ∫ f[ g(x) ]dx, 令t=g(x) ,解出 x= u(t) ,t=g(x) 和x= u(t) 互为反函数,dx=u(t)dt 则∫f(t) du(t).

5.2 有理函数的积分

两个多项式的商 P(x) / Q(x) 称为有理函数,又称为有理分式。

当分子多项式P(x)的次数小于分母多项式的次数时,称这有理函数为真分式。

当分子多项式P(x)的次数大于分母多项式的次数时,称这有理函数为假分式。

如果 分母Q(x)可以分解为两个多项式的乘积。

Q(x)=Q(x1)Q(x2) 且Q(x1)、Q(x2)没有公因式,可以拆分成两个真分式之和

P(x)/Q(x) = P1(x)/Q1(x) + P2(x)/Q2(x)。

例如:设有两个个因子 A,B满足:

通过次幂的系数相等,有

A+B=1, -(2A+3B)=1,

我们可以进一步的解得:A=4, B=-3

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...