本文推导的是 IMU 积分的误差状态空间方程,预积分的推导要比积分复杂,但是推到方法和本文是一样的,因此这里只给出积分的推导方式。
另外,本文的推导方式参考了 R2Live Supplementary Material 中给出的推导,这种方法是基于李群李代数使用 全增量 的方法计算误差状态空间方程,非常好理解。
{pi+1=pi+viΔt+12[Ri(ami−bai−nai)−g]Δt2vi+1=vi+[Ri(ami−bai−nai)−g]ΔtRi+1=Riexp[(ωmi−bωi−nωi)Δt]bωi+1=bωi+nbωiΔtbai+1=bai+nbaiΔt\left\{\begin{array}{l} \mathbf{p}_{i+1}=\mathbf{p}_i+\mathbf{v}_i \Delta t+\frac{1}{2}\left[\mathbf{R}_i\left(\mathbf{a}_{m i}-\mathbf{b}_{a_i}-\mathbf{n}_{a i}\right)-\mathbf{g}\right] \Delta t^2 \\ \mathbf{v}_{i+1}=\mathbf{v}_i+\left[\mathbf{R}_i\left(\mathbf{a}_{m i}-\mathbf{b}_{a i}-\mathbf{n}_{a i}\right)-\mathbf{g}\right] \Delta t \\ \mathbf{R}_{i+1}=\mathbf{R}_i \exp \left[\left(\mathbf{\omega}_{mi}-\mathbf{b}_{\omega i}-\mathbf{n}_{\omega i}\right) \Delta t\right] \\ \mathbf{b}_{\omega i+1}=\mathbf{b}_{\omega i}+\mathbf{n}_{b_\omega i} \Delta t \\ \mathbf{b}_{a_i+1}=\mathbf{b}_{a i}+\mathbf{n}_{b_a i} \Delta t \end{array}\right. ⎩⎨⎧pi+1=pi+viΔt+21[Ri(ami−bai−nai)−g]Δt2vi+1=vi+[Ri(ami−bai−nai)−g]ΔtRi+1=Riexp[(ωmi−bωi−nωi)Δt]bωi+1=bωi+nbωiΔtbai+1=bai+nbaiΔt
比如:
角速度 ω\mathbf{\omega}ω 的名义状态和真实状态:
{名义值:ωi^=ωmi−b^ωi真实值:ωi=ωi^−δb^ωi−nωi=ωmi−b^ωi−δb^ωi−nωi\left\{\begin{array}{l} 名义值:\hat{\mathbf{\omega}_i} = \mathbf{\omega}_{m i} - \hat{\mathbf{b}}_{\omega i} \\ 真实值:\mathbf{\omega}_i = \hat{\mathbf{\omega}_i} - \delta\hat{\mathbf{b}}_{\omega i} - \mathbf{n}_{\omega i} = \mathbf{\omega}_{m i} - \hat{\mathbf{b}}_{\omega i} - \delta\hat{\mathbf{b}}_{\omega i} - \mathbf{n}_{\omega i} \end{array}\right. {名义值:ωi^=ωmi−b^ωi真实值:ωi=ωi^−δb^ωi−nωi=ωmi−b^ωi−δb^ωi−nωi
加速度 a\mathbf{a}a 的名义状态和真实状态:
{名义值:ai^=ami−b^ai真实值:ai=ai^−δb^ai−nai=ami−b^ai−δb^ai−nai\left\{\begin{array}{l} 名义值:\hat{\mathbf{a}_i} = \mathbf{a}_{m i} - \hat{\mathbf{b}}_{a i} \\ 真实值:\mathbf{a}_i = \hat{\mathbf{a}_i} - \delta\hat{\mathbf{b}}_{a i} - \mathbf{n}_{a i} = \mathbf{a}_{m i} - \hat{\mathbf{b}}_{a i} - \delta\hat{\mathbf{b}}_{a i} - \mathbf{n}_{a i} \end{array}\right. {名义值:ai^=ami−b^ai真实值:ai=ai^−δb^ai−nai=ami−b^ai−δb^ai−nai
李代数上的增量和李群上的扰动之间的关系:
exp(ϕ+Δϕ)=exp(JlΔϕ)⋅exp(ϕ)=exp(ϕ)⋅exp(JrΔϕ)\begin{align} \exp (\phi+\Delta \phi) =\exp (J_l \Delta \phi) \cdot \exp (\phi) =\exp (\phi) \cdot \exp (J_r \Delta \phi)\end{align} exp(ϕ+Δϕ)=exp(JlΔϕ)⋅exp(ϕ)=exp(ϕ)⋅exp(JrΔϕ)
SO(3)SO(3)SO(3)的伴随性质:
R⊤exp(ϕ)R=exp(R⊤ϕ)\begin{align}R^{\top} \exp (\phi) R=\exp \left(R^{\top} \phi\right)\end{align} R⊤exp(ϕ)R=exp(R⊤ϕ)
BCH近似公式:
log[exp(ϕ1)exp(ϕ2)]={Jl(ϕ2)−1ϕ1+ϕ2,ϕ1≈0Jr(ϕ1)−1ϕ2+ϕ1,ϕ2≈0\begin{align} \log \left[\exp \left(\phi_1\right) \exp \left(\phi_2\right)\right]=\left\{\begin{array}{l}\operatorname{J_l}\left(\phi_2\right)^{-1} \phi_1+\phi_2, \quad \phi_1 \approx 0 \\ \operatorname{J_r}\left(\phi_1\right)^{-1} \phi_2+\phi_1, \quad \phi_2 \approx 0 \end{array}\right.\end{align} log[exp(ϕ1)exp(ϕ2)]={Jl(ϕ2)−1ϕ1+ϕ2,ϕ1≈0Jr(ϕ1)−1ϕ2+ϕ1,ϕ2≈0
定义:δr^i+1=log[R^i+1⊤Ritt]名义值:R^i+1=R^iexp(w^iΔt)真实值:Ri+1=R^iexp(δr^i)⋅exp(ωiΔt)\begin{aligned} \text { 定义:} \delta \hat{r}_{i+1} & =\log \left[\hat{R}_{i+1}^{\top} R_{i t t}\right] \\ \text {名义值:} \hat{R}_{i+1} & =\hat{R}_i \exp \left(\hat{w}_i \Delta t\right) \\ \text {真实值:} R_{i+1} & =\hat{R}_i \exp \left(\delta \hat{r}_i\right) \cdot \exp \left(\omega_i \Delta t\right) \end{aligned} 定义:δr^i+1名义值:R^i+1真实值:Ri+1=log[R^i+1⊤Ritt]=R^iexp(w^iΔt)=R^iexp(δr^i)⋅exp(ωiΔt)
则旋转误差如下:
名义值:v^i+1=v^i+(R^ia^i−g)Δt真实值:vi+1=(v^i+δv^i)+[R^iexp(δr^i)(a^i−δb^ai−nai)−g]Δt\begin{aligned} 名义值: \hat{v}_{i+1}&=\hat{v}_i+\left(\hat{R}_i \hat{a}_i-g\right) \Delta t \\ 真实值:v_{i+1} &= \left(\hat{v}_i+\delta \hat{v}_i \right) + \left[\hat{R}_i \exp \left(\delta \hat{r}_i\right)\left(\hat{a}_i-\delta \hat{b}_{a i}-n_{a i}\right)-g\right] \Delta t \end{aligned} 名义值:v^i+1真实值:vi+1=v^i+(R^ia^i−g)Δt=(v^i+δv^i)+[R^iexp(δr^i)(a^i−δb^ai−nai)−g]Δt
名义值: p^i+1=pi^+v^iΔt+12(Ri^ai^−g)Δt2真实值: pi+1=(p^i+δp^i)+(v^i+δv^i)Δt+12[R^i⋅exp(δr^i)(a^i−δb^ai−nai)−g]⋅Δt2\begin{aligned} & \text { 名义值: } \hat{p}_{i+1}=\hat{p_i}+\hat{v}_i \Delta t+\frac{1}{2}\left(\hat{R_i} \hat{a_i}-g\right) \Delta t^2 \\ & \text { 真实值: } p_{i+1}=\left(\hat{p}_i+\delta \hat{p}_i\right)+\left(\hat{v}_i+\delta \hat{v}_i\right) \Delta t+\frac{1}{2}\left[\hat{R}_i \cdot \exp \left(\delta \hat{r}_i\right)\left(\hat{a}_i-\delta \hat{b}_{ai}-n_{ai}\right) -g\right] \cdot \Delta t^2 \\ & \end{aligned} 名义值: p^i+1=pi^+v^iΔt+21(Ri^ai^−g)Δt2 真实值: pi+1=(p^i+δp^i)+(v^i+δv^i)Δt+21[R^i⋅exp(δr^i)(a^i−δb^ai−nai)−g]⋅Δt2
名义值:b^wi+1=b^wi真实值:bwi+1=b^wi+δbwi+Δt⋅nbwi误差:δbwi+1=δbwi+Δt⋅nbwi\begin{aligned} \text { 名义值:} \hat{b}_{w_{ i+1}} &=\hat{b}_{w i} \\ \text { 真实值:} b_{w_{i+1} } &=\hat{b}_{w_i}+\delta b_{w i}+\Delta t \cdot n_{b_{wi}} \\ \text { 误差:} \delta b_{w_{i+1} } &=\delta b_{w i}+\Delta t \cdot n_{b_{wi}} \\ \end{aligned} 名义值:b^wi+1 真实值:bwi+1 误差:δbwi+1=b^wi=b^wi+δbwi+Δt⋅nbwi=δbwi+Δt⋅nbwi
名义值:b^ai+1=b^ai真实值:bai+1=b^ai+δbai+Δt⋅nbai误差:δbai+1=δbai+Δt⋅nbai\begin{aligned} \text { 名义值:} \hat{b}_{a_{ i+1}} &=\hat{b}_{a i} \\ \text { 真实值:} b_{a_{i+1} } &=\hat{b}_{a_i}+\delta b_{a i}+\Delta t \cdot n_{b_{ai}} \\ \text { 误差:} \delta b_{a_{i+1} } &=\delta b_{a i}+\Delta t \cdot n_{b_{ai}} \\ \end{aligned} 名义值:b^ai+1 真实值:bai+1 误差:δbai+1=b^ai=b^ai+δbai+Δt⋅nbai=δbai+Δt⋅nbai
定义IMU运动学的矩阵状态空间方程形式为
δx^i+1=Fx⋅δx^i+Fw⋅wi\delta \hat{\mathbf{x}}_{i+1}=\mathbf{F}_x \cdot \delta \hat{\mathbf{x}}_i + \mathbf{F}_w \cdot \mathbf{w}_i δx^i+1=Fx⋅δx^i+Fw⋅wi
其中状态变量的定义为:
δx^i=[δr^i,δp^i,δv^i,δb^wi,δb^ai]⊤wi=[δnwi,δnai,δnbwi,δnbai]⊤\begin{aligned} \delta \hat{\mathbf{x}}_i &= \left[\delta \hat{\mathbf{r}}_i, ~~\delta \hat{\mathbf{p}}_i, ~~\delta \hat{\mathbf{v}}_i, ~~\delta \hat{\mathbf{b}}_{wi}, ~~\delta \hat{\mathbf{b}}_{ai}\right]^{\top} \\ \mathbf{w}_i &= \left[\delta\mathbf{n}_{wi}, ~~\delta\mathbf{n}_{ai}, ~~\delta\mathbf{n}_{b_{wi}}, ~~ \delta\mathbf{n}_{b_{ai}}\right]^{\top} \end{aligned} δx^iwi=[δr^i, δp^i, δv^i, δb^wi, δb^ai]⊤=[δnwi, δnai, δnbwi, δnbai]⊤
则系数矩阵为:
Fx=[exp(−ωiΔt^)00−IΔt00IIΔt00−R^i(a^i)×Δt0I0−R^iΔt000I000000]Fω=[−IΔt00000000−R^iΔt0000IΔt0000IΔt]\begin{aligned} \mathbf{F}_x &= \left[\begin{array}{ccccc} \exp \left(-\hat{\omega_i \Delta t}\right) & 0 & 0 & -I \Delta t & 0 \\ 0 & I & I \Delta t & 0 & 0\\ -\hat{R}_i\left(\hat{a}_i\right)_{\times} \Delta t & 0 & I & 0 & -\hat{R}_i \Delta t \\ 0 & 0 & 0 & I & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] \\\\ F_\omega &=\left[\begin{array}{cccc} -I \Delta t & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -\hat{R}_i \Delta t & 0 & 0 \\ 0 & 0 & I \Delta t & 0 \\ 0 & 0 & 0 & I \Delta t \end{array}\right] \end{aligned} FxFω=exp(−ωiΔt^)0−R^i(a^i)×Δt000I0000IΔtI00−IΔt00I000−R^iΔt00=−IΔt000000−R^iΔt00000IΔt00000IΔt
协方差矩阵的传播公式为:
Pi+1=FxPiFx⊤+FωQFω⊤\mathbf{P}_{i+1}=\mathbf{F}_x \mathbf{P}_i \mathbf{F}_x{ }^{\top}+\mathbf{F}_\omega \mathbf{Q} \mathbf{F}_\omega{ }^{\top} Pi+1=FxPiFx⊤+FωQFω⊤
其中 Q\mathbf{Q}Q 为测量噪声的协方差矩阵。