MATLAB——DFT(离散傅里叶变换)
创始人
2024-05-31 19:26:12
0

题目1:
已知有限长序列x(n)为:
x(n)=[0,1,2,3,4,5,6,7,8,9],求x(n)的DFT和IDFT。要求
1)画出序列傅里叶变换对应的|X(k)|和arg[X(k)]图形。
2)画出原信号与傅里叶逆变换IDFT[X(k)]图形进行比较。
知识点:
DFT(Discrete Fourier Transform)和IDFT(Inverse Discrete Fourier Transform)是互为逆运算的变换。

给定一个长度为 NNN 的复数序列 x0,x1,x2,…,xN−1x_0, x_1, x_2, \dots, x_{N-1}x0​,x1​,x2​,…,xN−1​,DFT 将其转换为另一个长度为 NNN 的复数序列 X0,X1,X2,…,XN−1X_0, X_1, X_2, \dots, X_{N-1}X0​,X1​,X2​,…,XN−1​:

Xk=∑n=0N−1xne−j2πkn/N,k=0,1,2,…,N−1X_k=\sum_{n=0}^{N-1}x_n e^{-j2\pi kn/N}, \quad k=0,1,2,\dots,N-1Xk​=n=0∑N−1​xn​e−j2πkn/N,k=0,1,2,…,N−1

IDFT 则将 X0,X1,X2,…,XN−1X_0, X_1, X_2, \dots, X_{N-1}X0​,X1​,X2​,…,XN−1​ 转换回 x0,x1,x2,…,xN−1x_0, x_1, x_2, \dots, x_{N-1}x0​,x1​,x2​,…,xN−1​:
xn=1N∑k=0N−1Xkej2πkn/N,n=0,1,2,…,N−1x_n=\frac{1}{N}\sum_{k=0}^{N-1}X_k e^{j2\pi kn/N}, \quad n=0,1,2,\dots,N-1xn​=N1​k=0∑N−1​Xk​ej2πkn/N,n=0,1,2,…,N−1
程序:
主要是根据变换公式来的,不要忘了逆变换要除以N,有了前面 DFS的基础,这个代码相对比较简单。

xn=[0,1,2,3,4,5,6,7,8,9];
N=length(xn);
n=0:N-1;
k=0:N-1;
WN=exp(-2*j*pi/N);XK=xn*WN.^(n'*k);
x=XK*WN.^(-n'*k)/N;
subplot(221);
stem(n,xn);
subplot(222);
stem(k,abs(XK));
subplot(223);
stem(k,angle(XK));
subplot(224);
stem(n,x);

运行结果:
在这里插入图片描述
题目2:
有限长序列DFT与周期序列DFS的联系
已知周期序列的主值x(n)=[0,1,2,3,4,5],求x(n)周期重复次数为4次时的DFS。要求
1)画出原主值序列和信号周期序列;
2)画出序列傅里叶变换对的图形。
知识点:
我们知道,在时域上。周期序列可以看做是有限长序列的周期延拓。在频域上是否也这样呢。答案是肯定的,现在来进行验证。
代码:

x0=[0,1,2,3,4,5];
N0=length(x0);
n0=0:N0-1;
k0=0:N0-1;
x1=x0';%转置
xn=x1*ones(1,4);
xn=xn(:)';
NN=length(xn);
nn=0:NN-1;
kn=0:NN-1;
%nn=0:4*N0-1;   
%kn=0:4*N0-1;
%xn=x0(mod(nn,N0)+1);
subplot(231);
stem(n0,x0);
title('原序列');
subplot(232);
stem(nn,xn);
title('时域周期延拓');%求原序列的DFT
WN0=exp(-2*j*pi/N0);
X0K=x0*WN0.^(n0'*k0);
subplot(233);
stem(k0,abs(X0K));
title('原序列DFT幅值');
subplot(234);
stem(k0,angle(X0K));
title('原序列DFT相角');%延拓的DFS
WNN=exp(-2*j*pi/N0);
%一定要注意这个地方除N0,虽然进行了周期延拓,但是一个周期上的采样点数,没有变
XNK=xn*(WNN.^(nn'*kn));
subplot(235);
stem(kn,abs(XNK));
title('周期序列DFS幅值');
subplot(236);
stem(kn,angle(XNK));
title('周期序列DFS相角');
XN=dfs(xn,NN);

运行结果:
在这里插入图片描述

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...