深度学习笔记-2.自动梯度问题
创始人
2024-05-30 22:19:19
0

通过反向传播进行自动求梯度

        • 1-requires_grad问题
        • 2-梯度
        • 3- detach() 和 with torch.no_grad()
        • 4- Tensor.data.requires_grad

PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播.

1-requires_grad问题

requires_grad=True
开始追踪(track)在其上的所有操作(这样就可以利用链式法则进行梯度传播了),完成计算后,可以调用.backward()来完成所有梯度计算。默认 requires_grad = False
完成计算后,可以调用**.backward()来完成所有梯度计算。此Tensor的梯度将累积到.grad**属性中。

#x是直接创建的,所以它没有grad_fn, 而
x = torch.ones(2, 2, requires_grad=True)
print(x)#tensor([[1., 1.],[1., 1.]], requires_grad=True)
print(x.grad_fn)#None#y是通过一个加法操作创建的,所以它有一个为的grad_fn。
y = x + 2
print(y)#tensor([[3., 3.],[3., 3.]], grad_fn=)
print(y.grad_fn)##打印是否有叶子节点
print(x.is_leaf, y.is_leaf) # True False

若开始没有设置requires_grad 属性可通过 .requires_grad_()来用in-place的方式改requires_grad属性

a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False
a = ((a * 3) / (a - 1))
print(a.requires_grad) # False
a.requires_grad_(True)
print(a.requires_grad) # True
b = (a * a).sum()
print(b.grad_fn)#

2-梯度

标量:标量就是一个数字。标量也称为0维数组
向量:向量是一组标量组成的列表。向量也称为1维数组。
矩阵:矩阵是由一组向量组成的集合。矩阵也称为2维数组。
张量:张量是矩阵的推广,可以用来描述N维数据

注意在y.backward()时,如果y是标量,则不需要为backward()传入任何参数;否则,需要传入一个与y同形的Tensor

out.backward() # 等价于 out.backward(torch.tensor(1.)) 反向转播#求导
x = torch.tensor([1.0, 2.0, 3.0, 4.0], requires_grad=True)
y = 2 * x
z = y.view(2, 2)
print(z)#tensor([[2., 4.],[6., 8.]], grad_fn=)

现在 z 不是一个标量,所以在调用backward时需要传入一个和z同形的权重向量进行加权求和得到一个标量。

v = torch.tensor([[1.0, 0.1], [0.01, 0.001]], dtype=torch.float)
z.backward(v)
print(x.grad)#tensor([2.0000, 0.2000, 0.0200, 0.0020]) x.grad是和x同形的张量

3- detach() 和 with torch.no_grad()

两种方式中断梯度追踪,无法进行梯度链式法则梯度传播
1-detach()
将其从追踪记录中分离出来,这样就可以防止将来的计算被追踪,这样梯度就传不过去了

2-with torch.no_grad()
将不想被追踪的操作代码块包裹起来,这种方法在评估模型的时候很常用,因为在评估模型时我们并不需要计算可训练参数(requires_grad=True)的梯度。

x = torch.tensor(1.0, requires_grad=True)
y1 = x ** 2 
with torch.no_grad():y2 = x ** 3
y3 = y1 + y2print(x.requires_grad)#true
print(y1, y1.requires_grad) #tensor(1., grad_fn=) True
print(y2, y2.requires_grad) # False
print(y3, y3.requires_grad) # tensor(2., grad_fn=)Truey3.backward()#y2被包裹 所以y2有关的梯度是不会回传的 结果只是y1 对x的梯度
print(x.grad)#tensor(2.)#使用y2的传播会报错
#RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

4- Tensor.data.requires_grad

当你想要修改tensor的数值,但是又不希望被autograd记录(即不会影响反向传播),那么我么可以对tensor.data进行操作。

x = torch.ones(1,requires_grad=True)print(x.data) # tensor([1.]) #还是一个tensor
print(x.data.requires_grad) #False #但是已经是独立于计算图之外y = 2 * x
x.data *= 100 # 只改变了值,不会记录在计算图,所以不会影响梯度传播y.backward()#tensor([100.], requires_grad=True)
print(x) # 更改data的值也会影响tensor的值
print(x.grad)#tensor([2.])

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...