题目如下:

思路 or 题解:
概率DP
状态定义:
dp[i]dp[i]dp[i] 表示从树根到第 iii 层的期望
状态转移:
dp[i]=(dp[i−1]+1)∗11−pdp[i] = (dp[i - 1] + 1) * \frac{1}{1-p}dp[i]=(dp[i−1]+1)∗1−p1
这个式子的意思是:从第 000 层出发,到第 iii 层的期望时间 E(i)E(i)E(i) 可以通过从第 000 层到第 i−1i-1i−1 层的期望时间 E(i−1)E(i-1)E(i−1) 加上一次上升所需要的期望时间(即 111)再乘以 11−p\frac{1}{1-p}1−p1。
在期望中,1/(1−p)1/(1-p)1/(1−p) 表示一个事件在不停地进行下去,直到该事件发生为止所需的期望次数。
简单解释一下这个 11−p\frac{1}{1-p}1−p1
以第一个样例为例子:
期望 = 1∗12+2∗14+3∗18....1 * \frac{1}{2} + 2 * \frac{1}{4} + 3 * \frac{1}{8} ....1∗21+2∗41+3∗81....
收敛与 11−p\frac{1}{1-p}1−p1
这个式子是 等差 ×\times× 等比
具体如何得到,再此不再多赘述。
答案计算
DP递推
AC 代码如下:
/*
Make it simple and keep self stupid
author:Joanh_Lan
*/
#pragma GCC optimize(3)
#pragma GCC optimize("inline") // 如果比赛允许开编译器优化的话,可以默写这两段
#include
#include
#include
#include
#include
#include
#include
#include