由于跨平台性的设计,Java的指令都是根据栈来设计的。不同平台CPU架构不同,所以不能设计为基于寄存器的。
优点是跨平台,指令集小,编译器容易实现,缺点是性能下降,实现同样的功能需要更多的指令。
栈是运行时的单位,而堆是存储的单位。
Java虚拟机栈是什么?
生命周期
作用
优点:
栈中可能出现的异常
Java虚拟机规范允许Java栈的大小是动态的或者是固定不变的。
StackOverflowError
异常。OutofMemoryError
异常。设置栈的大小
我们可以使用参数-Xss
选项来设置线程的最大栈空间,栈的大小直接决定了函数调用的最大可达深度。
栈中存储什么?
每个线程都有自己的栈,栈中的数据都是以栈帧,StackFrame)的格式存在
在这个线程上正在执行的每个方法都各自对应一个栈帧(Stack Frame)。
栈帧是一个内存区块,是一个数据集,维系着方法执行过程中的各种数据信息。
JVM直接对Java栈的操作只有两个,就是对栈帧的压栈和出栈,遵循“先进后出”/“后进先出”原则。在一条活动线程中,一个时间点上,只会有一个活动的栈帧。即只有当前正在执行的方法的栈帧(栈顶栈帧)是有效的,这个栈帧被称为当前栈帧(Current Frame),与当前栈帧相对应的方法就是当前方法(CurrentMethod),定义这个方法的类就是当前类(Current class)
执行引擎运行的所有字节码指令只针对当前栈帧进行操作。
如果在该方法中调用了其他方法,对应的新的栈帧会被创建出来,放在栈的顶端,成为新的当前帧。
不同线程中所包含的栈嵘是不允许存在相互引用的,即不可能在一个栈帧之中引用另外一个线程的栈帧。
如果当前方法调用了其他方法,方法返回之际,当前栈帧会传回此方法的执行结果给前一个栈帧,接着,虚拟机会丢弃当前栈帧,使得前一个栈帧重新成为当前栈帧
Java方法有两种返回函数的方式,一种是正常的函数返回,使用return指令;另外一种是抛出异常。不管使用哪种方式,都会导致栈帧被弹出。
每个栈帧中存储着:
局部变量表也被称之为局部变量数组或本地变量表
定义为一个数字数组,主要用于存储方法参数和定义在方法体内的局部变量,这些数据类型包括各类基本数据类型、对象引用(reference),以及returnAddress类型。
由于局部变量表是建立在线程的栈上,是线程的私有数据,因此不存在数据安全问题
局部变量表所需的容量大小是在编译期确定下来的,并保存在方法的Code属性的maximum local variables数据项中。在方法运行期间是不会改变局部变量表的大小的。
可以看到局部变量表槽数(maximum local variables)是存在于字节码中的,也就是说在编译期间就已经确定了
方法嵌套调用的次数由栈的大小决定。一般来说,栈越大,方法嵌套调用次数越多。对一个函数而言,它的参数和局部变量越多,使得局部变量表膨胀,它的栈帧就越大,以满足方法调用所需传递的信息增大的需求。进而函数调用就会占用更多的栈空间,导致其嵌套调用次数就会减少。(对代码量比较大的方法进行拆分或许可以提前释放部分栈帧占据的空间,避免栈溢出🤔?)
局部变量表中的变量只在当前方法调用中有效。在方法执行时,虚拟机通过使用局部变量表完成参数值到参数变量列表的传递过程。当方法调用结束后,随着方法栈帧的销毁,局部变量表也会随之销毁。
上图,起始pc表示字节码指令的行号,长度表示作用域的长度,起始pc+length总是等于字节码长度
参数值的存放总是在局部变量数组的index0开始,到数组长度-1的索引结束。
局部变量表,最基本的存储单元是Slot(变量槽)
局部变量表中存放编译期可知的各种基本数据类型(8种),引用类型(reference),returnAddress类型的变量。
在局部变量表里,32位以内的类型只占用一个slot(包括returnAddress类型),64位的类型(1ong和double)占用两个slot。
byte、short、char在存储前被转换为int,boolean也被转换为int,0表示false,非0表示true.
long和double则占据两个Slot。
JVM会为局部变量表中的每一个slot都分配一个访问索引,通过这个素引即可成功访问到局部变量表中指定的局部变量值
当一个实例方法被调用的时候,它的方法参数和方法体内部定义的局部变量将会按照顺序被复制到局部变量表中的每一个Slot上
如果需要访问局部变量表中一个64bit的局部变量值时,只需要使用前一个索引即可。(比如:访问1ong或double类型变量)
如果当前帧是由构造方法或者实例方法创建的,那么该对象引用this将会存放在index为0的slot处,其余的参数按照参数表顺序继续排列。
调用了有返回值的方法,如果没有对返回值进行接收的话,在局部变量表中也是不会存放返回值的
如上图,double变量v的序号为3,而他的下一个变量c的序号为5,可以说明,double是需要占据两个slot的空间
slot的重复利用
栈帧中的局部变量表中的槽位是可以重用的,如果一个局部变量过了其作用域,那么在其作用域之后申明的新的局部变量就很有可能会复用过期局部变量的槽位,从而达到节省资源的目的。
上图中序号2出现了两次,即在变量b的作用域结束之后,对其的slot进行了复用,将其分配给了变量c,如果发生了slot复用则起始pc+长度就不会等于字节码长度
public void test(){int i;System.out.println(i);
}
这样的代码是错误的,没有赋值不能够使用。
变量的分类:
按照数据类型分:
按照在类中声明的位置分:
成员变量:使用前都存在默认初始化值
类变量:在linking的prepare阶段:给类变量默认赋值,initialization阶执行显示赋值以及静态代码块中的赋值操作
实例变量;随着对象的创建,在堆空间中分配实例变量空间,并进行默认赋值
局部变量:使用前必须显示赋值,否则不能通过编译
补充说明
每一个独立的栈帧中除了包含局部变量表以外,还包含一个后进先出(Last-In-First-Out)的操作数栈,也可以称之为表达式栈(Expression Stack)
操作数栈,在方法执行过程中,根据字节码指令,往栈中写入数据或提取数据,即入栈(push)/出栈(pop)。
某些字节码指令将值压入操作数栈,其余的字节码指令将操作数取出栈。使用它们后再把结果压入栈。
比如:执行复制、交换、求和等操作
操作数栈,主要用于保存计算过程的中间结果,同时作为计算过程中变量临时的存储空间。
操作数栈就是JVM执行引擎的一个工作区,当一个方法刚开始执行的时候,一个新的栈帧也会随之被创建出来,这个方法的操作数栈是空的。
每一个操作数栈都会拥有一个明确的栈深度用于存储数值,其所需的最大深度在编译期就定义好了,保存在方法的code属性中,为max_stack的值。
栈中的任何一个元素都是可以任意的Java数据类型。
32bit的类型占用一个栈单位深度
64bit的类型占用两个栈单位深度
操作数栈并非采用访问索引的方式来进行数据访问的,而是只能通过标准的入栈(push)和出栈(pop)操作来完成一次数据访问。
如果被调用的方法带有返回值的话,其返回值将会被压入当前栈帧的操作数栈中,并更新PC寄存器中下一条需要执行的字节码指令。
操作数栈中元素的数据类型必须与字节码指令的序列严格匹配,这由编译器在编译器期间进行验证,同时在类加载过程中的类检验阶段的数据流分析阶段要再次验证。
另外,我们说Java虚拟机的解释引擎是基于栈的执行引擎,其中的栈指的就是操作数栈。
前面提过,基于栈式架构的虚拟机所使用的零地址指令更加紧凑,但完成一项操作的时候必然需要使用更多的入栈和出栈指令,这同时也就意味着将需要更多的指令分派(instruction dispatch)次数和内存读/写次数。
由于操作数是存储在内存中的,因此频繁地执行内存读/写操作必然会影响执行速度。为了解决这个问题,Hotspot JVM的设计者们提出了栈顶缓存(Tos,Top-of-Stack Cashing)技术,将栈顶元素全部缓存在物理CPU的寄存器中,以此降低对内存的读/写次数,提升执行引擎的执行效率。
方法返回地址,动态链接,附加信息统称为帧数据区
每一个栈帧内部都包含一个指向运行时常量池中该栈帧所属方法的引用包含这个引用的目的就是为了支持当前方法的代码能够实现动态链接(Dynamic Linking)。比如:invokedynamic指令
在Java源文件被编译到字节码文件中时,所有的变量和方法引用都作为符号引用(Symbolic Reference)保存在class文件的常量池里
比如:描述一个方法调用了另外的其他方法时,就是通过常量池中指向方法的符号引用来表示的,那么动态链接的作用就是为了将这些符号引用转换为调用方法的直接吲用。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-u9npegWo-1678096399397)(内存与垃圾回收.assets/image-20230201161620310.png)]
为什么需要常量池呢?
常量池的作用,就是为了提供一些符号和常量,便于指令的识别。
在JVM中,将符号引用转换为调用方法的直接引用与方法的绑定机制相关。
静态链接
:
动态链接
:
对应的方法的绑定机制为:早期绑定(Early Binding)和晚期绑定(Late Binding)。绑定是一个字段、方法或者类在符号引用被替换为直接引用的过程,这仅仅发生一次。
早期绑定
(对应静态链接):
晚期绑定
(对应动态链接):
随着高级语言的横空出世,类似于Java一样的基于面向对象的编程语言如今越来越多,尽管这类编程语言在语法风格上存在一定的差别,但是它们彼此之间始终保持着一个共性,那就是都支持封装、继承和多态等面向对象特性,既然这一类的编程语言具备多态特性,那么自然也就具备早期绑定和晚期绑定两种绑定方式。
Java中任何一个普通的方法其实都具备虚函数的特征,它们相当于c++语言中的虚函数(c++中则需要使用关键字virtual来显式定义)。如果在Java程序中不希望某个方法拥有虚函数的特征时,则可以使用关键字final来标记这个方法。
非虚方法:
子类对象多态性的使用前提:
虚拟机中提供了以下几条方法调用指令:
invokestatic
:调用静态方法,解析阶段确定唯一方法版本(非虚方法)invokespecial
:调用方法、私有及父类方法,解析阶段确定唯一方法版本(非虚方法)invokevirtual
:调用所有虚方法(final方法调用的时候也会使用这个指令)invokeinterface
:调用接口方法invokedynamic
:动态解析出需要调用的方法,然后执行(jdk7引入)前四条指令固化在虚拟机内部,方法的调用执行不可人为干预,而invokedynamic指令则支持由用户确定方法版本。其中invokestatic指令和invokespecial指令调用的方法称为非虚方法,其余的(final修饰的除外)称为虚方法。
invokedynamic指令:
JVM字节码指令集一直比较稳定,一直到Java7中才增加了一个invokedynamic指令,这是Java为了实现「动态类型语言」支持而做的一
种改进。
但是在Java7中并没有提供直接生成invokedynamic指令的方法,需要借助ASM这种底层字节码工具来产生invokedynamic指令。直到Java8的Lambda表达式的出现,invokedynamic指令的生成,在Java中才有了直接的生成方式。
Java7中增加的动态语言类型支持的本质是对Java虚拟机规范的修改,而不是对Java语言规则的修改,这一块相对来讲比较复杂,增加了虚拟机中的方法调用,最直接的受益者就是运行在Java平台的动态语言的编译器。
动态类型语言::静态静态类型语言
动态类型语言和静态类型语言两者的区别就在于对类型的检查是在编译期还是在运行期,满足前者就是静态类型语言,反之是动态类型语言。
说的再直白一点就是,静态类型语言是判断变量自身的类型信息:动态类型语言是判断变量值的类型信息,变量没有类型信息,变量值才有类型信息,这是动态语言的一个重要特征。
Java语言中方法重写的本质:
IllegalAccessError介绍:
程序试图访问或修改一个属性或调用一个方法,这个属性或方法,你没有权限访问。一般的,这个会引起编译器异常。这个错误如果发生在运行时,就说明一个类发生了不兼容的改变。
虚方法表:
那么虚方法表什么时候被创建?
存放调用该方法的pc寄存器的值。
一个方法的结束,有两种方式:
无论通过哪种方式退出,在方法退出后都返回到该方法被调用的位置。方法正常退出时,调用者的pc计数器的值作为返回地址,即调用该方法的指令的下一条指令的地址。而通过异常退出的,返回地址是要通过异常表来确定,栈帧中一般不会保存这部分信息。
当一个方法开始执行后,只有两种方式可以退出这个方法:
执行引擎遇到任意一个方法返回的字节码指令(return),会有返回值传递给上层的方法调用者,简称正常完成出口
一个方法在正常调用完成之后究竟要使用哪一个返回指令还需要根据方法返回值的实际数据类型而定。
在字节码指令中,返回指令包含ireturn(当返回值是boolean、byte、char、short和int类型时使用)、lreturn、freturn、dreturn以及areturn,另外还有一个return指令供声明为void的方法、实例初始化方法、类和接口的初始化方法使用。
在方法执行的过程中遇到了异常(Exception),并且这个异常没有在方法内进行处理,也就是只要在本方法的异常表中没有搜索到匹配的异前处理器,就会导致方法退出。简称异常完成出口。
本质上,方法的退出就是当前栈帧出栈的过程。此时,需要恢复上层方法的局部变量表、操作数栈、将返回值压入调用者栈帧的操作数栈、设置PC寄存器值等,让调用者方法继续执行下去。
正常完成出口和异常完成出口的区别在于:通过异常完成出口退出的不会给他的上层调用者产生任何的返回值。
栈帧中还允许携带与Java虚拟机实现相关的一些附加信息。例如,对程序调试提供支持的信息。
举例栈溢出的情况?(StackOverfl lowError)
可以使用-Xss
指令设置栈的大小;在某些情况下也是支持动态扩容的,当内存全部被使用完毕之后,再去扩容就会出现oom
调整栈大小,就能保证不出现溢出吗
显然是不能的,无限递归肯定是必死的
分配的栈内存越大越好吗?
会占用其他内存空间,导致可运行的线程数量的减少
垃圾回收是否会涉及到虚拟机栈?
不会,gc只针对堆和方法区
方法中定义的局部变量是否线程安全?
对象没有逃逸就是安全的