对于余弦信号 cos(2πf0t)=12ej2πf0t+12e−j2πf0tcos(2\pi f_0 t)=\frac{1}{2}e^{j2\pi f_0 t}+\frac{1}{2}e^{-j2\pi f_0 t}cos(2πf0t)=21ej2πf0t+21e−j2πf0t,对上式进行傅里叶变换得到
Xcos(2πf0t)(f)=12δ(f−f0)+12δ(f+f0)X_{cos(2\pi f_0t)}(f)=\frac{1}{2}\delta (f-f_0)+\frac{1}{2}\delta (f+f_0)Xcos(2πf0t)(f)=21δ(f−f0)+21δ(f+f0)
相应的,对于正弦信号 sin(2πf0t)=12je−j2πf0t−j12e−j2πf0tsin(2\pi f_0 t)=\frac{1}{2}je^{-j2\pi f_0 t}-j\frac{1}{2}e^{-j2\pi f_0 t}sin(2πf0t)=21je−j2πf0t−j21e−j2πf0t,其傅里叶变换为
X(f)sin(2πf0t)(f)=12jδ(f+f0)−12jδ(f−f0)X(f)_{sin(2\pi f_0t)}(f)=\frac{1}{2}j\delta (f+f_0)-\frac{1}{2}j\delta (f-f_0)X(f)sin(2πf0t)(f)=21jδ(f+f0)−21jδ(f−f0)
反应在频谱上,为
下面将正弦信号 sin(2πf0t)sin(2\pi f_0 t)sin(2πf0t) 乘以 j (原信号乘以j相当于其频谱在复平面上逆时针旋转90°),再与余弦信号 cos(2πf0t)cos(2\pi f_0 t)cos(2πf0t) 相加,得到:ej2πf0t=cos(2πf0t)+jsin(2πf0t)e^{j2\pi f_0 t}=cos(2\pi f_0 t)+jsin(2\pi f_0 t)ej2πf0t=cos(2πf0t)+jsin(2πf0t),其频谱可表示为:
将一个时域信号乘以复指数信号 ej2πf0te^{j2\pi f_0 t}ej2πf0t,可以使频谱向上搬移 f0f_0f0 Hz,该过程被称为 正交混频(也称为复混频);类似的,将一个时域信号乘以复指数信号 ej2πf0te^{j2\pi f_0 t}ej2πf0t,可以将其频谱向下搬移 f0f_0f0 Hz。即傅里叶变换的频移公式: e±j2πf0tf(t)=X(f∓f0)e^{±j2\pi f_0t }f(t)=X(f∓f_0)e±j2πf0tf(t)=X(f∓f0)。
插值法
多相滤波法