复杂度的检测模型虽然可以取得SOTA的精度,但它们往往难以直接落地应用。模型压缩方法帮助模型在效率和精度之间进行折中。知识蒸馏是模型压缩的一种有效手段,它的核心思想是迫使轻量级的学生模型去学习教师模型提取到的知识,从而提高学生模型的性能。已有的知识蒸馏方法可以分别为三大类:
模型没有用pytorch官方自带的,而是参照以前总结的ResNet模型修改的。ResNet模型结构如下图:
ResNet18, ResNet34模型的残差结构是一致的,结构如下:
代码如下:
resnet.py
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
# from torchsummary import summaryclass ResidualBlock(nn.Module):"""实现子module: Residual Block"""def __init__(self, inchannel, outchannel, stride=1, shortcut=None):super(ResidualBlock, self).__init__()self.left = nn.Sequential(nn.Conv2d(inchannel, outchannel, 3, stride, 1, bias=False),nn.BatchNorm2d(outchannel),nn.ReLU(inplace=True),nn.Conv2d(outchannel, outchannel, 3, 1, 1, bias=False),nn.BatchNorm2d(outchannel))self.right = shortcutdef forward(self, x):out = self.left(x)residual = x if self.right is None else self.right(x)out += residualreturn F.relu(out)class ResNet(nn.Module):"""实现主module:ResNet34ResNet34包含多个layer,每个layer又包含多个Residual block用子module来实现Residual block,用_make_layer函数来实现layer"""def __init__(self, blocks, num_classes=1000):super(ResNet, self).__init__()self.model_name = 'resnet34'# 前几层: 图像转换self.pre = nn.Sequential(nn.Conv2d(3, 64, 7, 2, 3, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.MaxPool2d(3, 2, 1))# 重复的layer,分别有3,4,6,3个residual blockself.layer1 = self._make_layer(64, 64, blocks[0])self.layer2 = self._make_layer(64, 128, blocks[1], stride=2)self.layer3 = self._make_layer(128, 256, blocks[2], stride=2)self.layer4 = self._make_layer(256, 512, blocks[3], stride=2)# 分类用的全连接self.fc = nn.Linear(512, num_classes)def _make_layer(self, inchannel, outchannel, block_num, stride=1):"""构建layer,包含多个residual block"""shortcut = nn.Sequential(nn.Conv2d(inchannel, outchannel, 1, stride, bias=False),nn.BatchNorm2d(outchannel),nn.ReLU())layers = []layers.append(ResidualBlock(inchannel, outchannel, stride, shortcut))for i in range(1, block_num):layers.append(ResidualBlock(outchannel, outchannel))return nn.Sequential(*layers)def forward(self, x):x = self.pre(x)l1_out = self.layer1(x)l2_out = self.layer2(l1_out)l3_out = self.layer3(l2_out)l4_out = self.layer4(l3_out)p_out = F.avg_pool2d(l4_out, 7)fea = p_out.view(p_out.size(0), -1)out=self.fc(fea)return l1_out,l2_out,l3_out,l4_out,fea,outdef ResNet18():return ResNet([2, 2, 2, 2])def ResNet34():return ResNet([3, 4, 6, 3])if __name__ == '__main__':device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model = ResNet34()model.to(device)# summary(model, (3, 224, 224))
主要修改了输出结果,将每个block的结果输出出来。
这个三个模型的block是一致的,结构如下:
代码:
resnet_l.py
import torch
import torch.nn as nn
import torchvision
import numpy as npprint("PyTorch Version: ", torch.__version__)
print("Torchvision Version: ", torchvision.__version__)__all__ = ['ResNet50', 'ResNet101', 'ResNet152']def Conv1(in_planes, places, stride=2):return nn.Sequential(nn.Conv2d(in_channels=in_planes, out_channels=places, kernel_size=7, stride=stride, padding=3, bias=False),nn.BatchNorm2d(places),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))class Bottleneck(nn.Module):def __init__(self, in_places, places, stride=1, downsampling=False, expansion=4):super(Bottleneck, self).__init__()self.expansion = expansionself.downsampling = downsamplingself.bottleneck = nn.Sequential(nn.Conv2d(in_channels=in_places, out_channels=places, kernel_size=1, stride=1, bias=False),nn.BatchNorm2d(places),nn.ReLU(inplace=True),nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False),nn.BatchNorm2d(places),nn.ReLU(inplace=True),nn.Conv2d(in_channels=places, out_channels=places * self.expansion, kernel_size=1, stride=1, bias=False),nn.BatchNorm2d(places * self.expansion),)if self.downsampling:self.downsample = nn.Sequential(nn.Conv2d(in_channels=in_places, out_channels=places * self.expansion, kernel_size=1, stride=stride,bias=False),nn.BatchNorm2d(places * self.expansion))self.relu = nn.ReLU(inplace=True)def forward(self, x):residual = xout = self.bottleneck(x)if self.downsampling:residual = self.downsample(x)out += residualout = self.relu(out)return outclass ResNet(nn.Module):def __init__(self, blocks, num_classes=1000, expansion=4):super(ResNet, self).__init__()self.expansion = expansionself.conv1 = Conv1(in_planes=3, places=64)self.layer1 = self.make_layer(in_places=64, places=64, block=blocks[0], stride=1)self.layer2 = self.make_layer(in_places=256, places=128, block=blocks[1], stride=2)self.layer3 = self.make_layer(in_places=512, places=256, block=blocks[2], stride=2)self.layer4 = self.make_layer(in_places=1024, places=512, block=blocks[3], stride=2)self.avgpool = nn.AvgPool2d(7, stride=1)self.fc = nn.Linear(2048, num_classes)for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)def make_layer(self, in_places, places, block, stride):layers = []layers.append(Bottleneck(in_places, places, stride, downsampling=True))for i in range(1, block):layers.append(Bottleneck(places * self.expansion, places))return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)l1_out = self.layer1(x)l2_out = self.layer2(l1_out)l3_out = self.layer3(l2_out)l4_out = self.layer4(l3_out)p_out = self.avgpool(l4_out)fea = p_out.view(p_out.size(0), -1)out = self.fc(fea)return l1_out, l2_out, l3_out, l4_out, fea, outdef ResNet50():return ResNet([3, 4, 6, 3])def ResNet101():return ResNet([3, 4, 23, 3])def ResNet152():return ResNet([3, 8, 36, 3])if __name__ == '__main__':# model = torchvision.models.resnet50()model = ResNet50()print(model)input = torch.randn(1, 3, 224, 224)out = model(input)print(out.shape)
同上,将每个block都输出出来。
数据使用我以前在图像分类任务中的数据集——植物幼苗数据集,先将数据集转为训练集和验证集。执行代码:
import glob
import os
import shutilimage_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):print('true')#os.rmdir(file_dir)shutil.rmtree(file_dir)#删除再建立os.makedirs(file_dir)
else:os.makedirs(file_dir)from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(train_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)for file in val_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(val_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)
Teacher选用ResNet50。
新建teacher_train.py,插入代码:
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from torch.autograd import Variable
from model.resnet_l import ResNet50import json
import os
def train(model, device, train_loader, optimizer, epoch):model.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = Variable(data).to(device), Variable(target).to(device)l1_out,l2_out,l3_out,l4_out,fea, out = model(data)loss = criterion(out, target)optimizer.zero_grad()loss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device, test_loader):global Best_ACCmodel.eval()test_loss = 0correct = 0total_num = len(test_loader.dataset)print(total_num, len(test_loader))with torch.no_grad():for data, target in test_loader:data, target = Variable(data).to(device), Variable(target).to(device)l1_out,l2_out,l3_out,l4_out,fea, out = model(data)loss = criterion(out, target)_, pred = torch.max(out.data, 1)correct += torch.sum(pred == target)print_loss = loss.data.item()test_loss += print_losscorrect = correct.data.item()acc = correct / total_numavgloss = test_loss / len(test_loader)if acc > Best_ACC:torch.save(model, file_dir + '/' + 'best.pth')Best_ACC = accprint('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(avgloss, correct, len(test_loader.dataset), 100 * acc))return acc
if __name__ == '__main__':# 创建保存模型的文件夹file_dir = 'CoatNet'if os.path.exists(file_dir):print('true')os.makedirs(file_dir, exist_ok=True)else:os.makedirs(file_dir)# 设置全局参数modellr = 1e-4BATCH_SIZE = 16EPOCHS = 100DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 数据预处理7transform = transforms.Compose([transforms.RandomRotation(10),transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])
使用pytorch默认读取数据的方式。
# 读取数据dataset_train = datasets.ImageFolder('data/train', transform=transform)dataset_test = datasets.ImageFolder("data/val", transform=transform_test)with open('class.txt', 'w') as file:file.write(str(dataset_train.class_to_idx))with open('class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(dataset_train.class_to_idx))# 导入数据train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
# 实例化模型并且移动到GPUcriterion = nn.CrossEntropyLoss()model_ft = ResNet50()num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 12)model_ft.to(DEVICE)# 选择简单暴力的Adam优化器,学习率调低optimizer = optim.Adam(model_ft.parameters(), lr=modellr)cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)# 训练val_acc_list= {}for epoch in range(1, EPOCHS + 1):train(model_ft, DEVICE, train_loader, optimizer, epoch)cosine_schedule.step()acc=val(model_ft, DEVICE, test_loader)val_acc_list[epoch]=accwith open('result.json', 'w', encoding='utf-8') as file:file.write(json.dumps(val_acc_list))torch.save(model_ft, 'CoatNet/model_final.pth')
完成上面的代码就可以开始训练Teacher网络了。
学生网络选用ResNet18,是一个比较小一点的网络了,模型的大小有40M。训练100个epoch。
新建student_train.py,插入代码:
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from torch.autograd import Variable
from model.resnet import ResNet18import json
import os
# 定义训练过程def train(model, device, train_loader, optimizer, epoch):model.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = Variable(data).to(device), Variable(target).to(device)l1_out,l2_out,l3_out,l4_out,fea,out = model(data)loss = criterion(out, target)optimizer.zero_grad()loss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device, test_loader):global Best_ACCmodel.eval()test_loss = 0correct = 0total_num = len(test_loader.dataset)print(total_num, len(test_loader))with torch.no_grad():for data, target in test_loader:data, target = Variable(data).to(device), Variable(target).to(device)l1_out,l2_out,l3_out,l4_out,fea,out = model(data)loss = criterion(out, target)_, pred = torch.max(out.data, 1)correct += torch.sum(pred == target)print_loss = loss.data.item()test_loss += print_losscorrect = correct.data.item()acc = correct / total_numavgloss = test_loss / len(test_loader)if acc > Best_ACC:torch.save(model, file_dir + '/' + 'best.pth')Best_ACC = accprint('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(avgloss, correct, len(test_loader.dataset), 100 * acc))return acc
if __name__ == '__main__':# 创建保存模型的文件夹file_dir = 'resnet'if os.path.exists(file_dir):print('true')os.makedirs(file_dir, exist_ok=True)else:os.makedirs(file_dir)# 设置全局参数modellr = 1e-4BATCH_SIZE = 16EPOCHS = 100DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 数据预处理7transform = transforms.Compose([transforms.RandomRotation(10),transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])
使用pytorch默认读取数据的方式。
# 读取数据dataset_train = datasets.ImageFolder('data/train', transform=transform)dataset_test = datasets.ImageFolder("data/val", transform=transform_test)with open('class.txt', 'w') as file:file.write(str(dataset_train.class_to_idx))with open('class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(dataset_train.class_to_idx))# 导入数据train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
# 实例化模型并且移动到GPUcriterion = nn.CrossEntropyLoss()model_ft = ResNet18()print(model_ft)num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 12)model_ft.to(DEVICE)# 选择简单暴力的Adam优化器,学习率调低optimizer = optim.Adam(model_ft.parameters(), lr=modellr)cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)# 训练val_acc_list= {}for epoch in range(1, EPOCHS + 1):train(model_ft, DEVICE, train_loader, optimizer, epoch)cosine_schedule.step()acc=val(model_ft, DEVICE, test_loader)val_acc_list[epoch]=accwith open('result_student.json', 'w', encoding='utf-8') as file:file.write(json.dumps(val_acc_list))torch.save(model_ft, 'resnet/model_final.pth')
完成上面的代码就可以开始训练Student网络了。
学生网络继续选用ResNet18,使用Teacher网络蒸馏学生网络,训练100个epoch。
IRG知识蒸馏的脚本详见:
https://wanghao.blog.csdn.net/article/details/127802486?spm=1001.2014.3001.5502。
代码如下:
irg.py
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as Fclass IRG(nn.Module):'''Knowledge Distillation via Instance Relationship Graphhttp://openaccess.thecvf.com/content_CVPR_2019/papers/Liu_Knowledge_Distillation_via_Instance_Relationship_Graph_CVPR_2019_paper.pdfThe official code is written by Caffehttps://github.com/yufanLIU/IRG'''def __init__(self, w_irg_vert, w_irg_edge, w_irg_tran):super(IRG, self).__init__()self.w_irg_vert = w_irg_vertself.w_irg_edge = w_irg_edgeself.w_irg_tran = w_irg_trandef forward(self, irg_s, irg_t):fm_s1, fm_s2, feat_s, out_s = irg_sfm_t1, fm_t2, feat_t, out_t = irg_tloss_irg_vert = F.mse_loss(out_s, out_t)irg_edge_feat_s = self.euclidean_dist_feat(feat_s, squared=True)irg_edge_feat_t = self.euclidean_dist_feat(feat_t, squared=True)irg_edge_fm_s1 = self.euclidean_dist_fm(fm_s1, squared=True)irg_edge_fm_t1 = self.euclidean_dist_fm(fm_t1, squared=True)irg_edge_fm_s2 = self.euclidean_dist_fm(fm_s2, squared=True)irg_edge_fm_t2 = self.euclidean_dist_fm(fm_t2, squared=True)loss_irg_edge = (F.mse_loss(irg_edge_feat_s, irg_edge_feat_t) +F.mse_loss(irg_edge_fm_s1, irg_edge_fm_t1 ) +F.mse_loss(irg_edge_fm_s2, irg_edge_fm_t2 )) / 3.0irg_tran_s = self.euclidean_dist_fms(fm_s1, fm_s2, squared=True)irg_tran_t = self.euclidean_dist_fms(fm_t1, fm_t2, squared=True)loss_irg_tran = F.mse_loss(irg_tran_s, irg_tran_t)# print(self.w_irg_vert * loss_irg_vert)# print(self.w_irg_edge * loss_irg_edge)# print(self.w_irg_tran * loss_irg_tran)# print()loss = (self.w_irg_vert * loss_irg_vert +self.w_irg_edge * loss_irg_edge +self.w_irg_tran * loss_irg_tran)return lossdef euclidean_dist_fms(self, fm1, fm2, squared=False, eps=1e-12):'''Calculating the IRG Transformation, where fm1 precedes fm2 in the network.'''if fm1.size(2) > fm2.size(2):fm1 = F.adaptive_avg_pool2d(fm1, (fm2.size(2), fm2.size(3)))if fm1.size(1) < fm2.size(1):fm2 = (fm2[:,0::2,:,:] + fm2[:,1::2,:,:]) / 2.0fm1 = fm1.view(fm1.size(0), -1)fm2 = fm2.view(fm2.size(0), -1)fms_dist = torch.sum(torch.pow(fm1-fm2, 2), dim=-1).clamp(min=eps)if not squared:fms_dist = fms_dist.sqrt()fms_dist = fms_dist / fms_dist.max()return fms_distdef euclidean_dist_fm(self, fm, squared=False, eps=1e-12): '''Calculating the IRG edge of feature map. '''fm = fm.view(fm.size(0), -1)fm_square = fm.pow(2).sum(dim=1)fm_prod = torch.mm(fm, fm.t())fm_dist = (fm_square.unsqueeze(0) + fm_square.unsqueeze(1) - 2 * fm_prod).clamp(min=eps)if not squared:fm_dist = fm_dist.sqrt()fm_dist = fm_dist.clone()fm_dist[range(len(fm)), range(len(fm))] = 0fm_dist = fm_dist / fm_dist.max()return fm_distdef euclidean_dist_feat(self, feat, squared=False, eps=1e-12):'''Calculating the IRG edge of feat.'''feat_square = feat.pow(2).sum(dim=1)feat_prod = torch.mm(feat, feat.t())feat_dist = (feat_square.unsqueeze(0) + feat_square.unsqueeze(1) - 2 * feat_prod).clamp(min=eps)if not squared:feat_dist = feat_dist.sqrt()feat_dist = feat_dist.clone()feat_dist[range(len(feat)), range(len(feat))] = 0feat_dist = feat_dist / feat_dist.max()return feat_dist
新建kd_train.py,插入代码:
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasetsfrom model.resnet import ResNet18import json
import osfrom irg import IRG
# 定义训练过程
def train(s_net,t_net, device, criterionCls,criterionKD,train_loader, optimizer, epoch):s_net.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()l1_out_s,l2_out_s,l3_out_s,l4_out_s,fea_s, out_s = s_net(data)cls_loss = criterionCls(out_s, target)l1_out_t,l2_out_t,l3_out_t,l4_out_t,fea_t, out_t = t_net(data) # 训练出教师的 teacher_outputkd_loss = criterionKD([l3_out_s, l4_out_s, fea_s, out_s],[l3_out_t.detach(),l4_out_t.detach(),fea_t.detach(),out_t.detach()]) * lambda_kdloss = cls_loss + kd_lossloss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device,criterionCls, test_loader):global Best_ACCmodel.eval()test_loss = 0correct = 0total_num = len(test_loader.dataset)print(total_num, len(test_loader))with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)l1_out_s, l2_out_s, l3_out_s, l4_out_s, fea_s, out_s = model(data)loss = criterionCls(out_s, target)_, pred = torch.max(out_s.data, 1)correct += torch.sum(pred == target)print_loss = loss.data.item()test_loss += print_losscorrect = correct.data.item()acc = correct / total_numavgloss = test_loss / len(test_loader)if acc > Best_ACC:torch.save(model, file_dir + '/' + 'best.pth')Best_ACC = accprint('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(avgloss, correct, len(test_loader.dataset), 100 * acc))return acc
if __name__ == '__main__':# 创建保存模型的文件夹file_dir = 'resnet_kd'if os.path.exists(file_dir):print('true')os.makedirs(file_dir, exist_ok=True)else:os.makedirs(file_dir)# 设置全局参数modellr = 1e-4BATCH_SIZE = 16EPOCHS = 100DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')w_irg_vert=0.1w_irg_edge=5.0w_irg_tran=5.0lambda_kd=1.0
# 数据预处理7transform = transforms.Compose([transforms.RandomRotation(10),transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])
使用pytorch默认读取数据的方式。
# 读取数据dataset_train = datasets.ImageFolder('data/train', transform=transform)dataset_test = datasets.ImageFolder("data/val", transform=transform_test)with open('class.txt', 'w') as file:file.write(str(dataset_train.class_to_idx))with open('class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(dataset_train.class_to_idx))# 导入数据train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
model_ft = ResNet18()print(model_ft)num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 12)model_ft.to(DEVICE)# 选择简单暴力的Adam优化器,学习率调低optimizer = optim.Adam(model_ft.parameters(), lr=modellr)cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)teacher_model=torch.load('./CoatNet/best.pth')teacher_model.eval()# 实例化模型并且移动到GPUcriterionKD = IRG(w_irg_vert, w_irg_edge, w_irg_tran)criterionCls = nn.CrossEntropyLoss()# 训练val_acc_list= {}for epoch in range(1, EPOCHS + 1):train(model_ft,teacher_model, DEVICE,criterionCls,criterionKD, train_loader, optimizer, epoch)cosine_schedule.step()acc=val(model_ft,DEVICE,criterionCls , test_loader)val_acc_list[epoch]=accwith open('result_kd.json', 'w', encoding='utf-8') as file:file.write(json.dumps(val_acc_list))torch.save(model_ft, 'resnet_kd/model_final.pth')
完成上面的代码就可以开始蒸馏模式!!!
加载保存的结果,然后绘制acc曲线。
import numpy as np
from matplotlib import pyplot as plt
import json
teacher_file='result.json'
student_file='result_student.json'
student_kd_file='result_kd.json'
def read_json(file):with open(file, 'r', encoding='utf8') as fp:json_data = json.load(fp)print(json_data)return json_datateacher_data=read_json(teacher_file)
student_data=read_json(student_file)
student_kd_data=read_json(student_kd_file)x =[int(x) for x in list(dict(teacher_data).keys())]
print(x)plt.plot(x, list(teacher_data.values()), label='teacher')
plt.plot(x,list(student_data.values()), label='student without KD')
plt.plot(x, list(student_kd_data.values()), label='student with KD')plt.title('Test accuracy')
plt.legend()plt.show()
本文重点讲解了如何使用IRG知识蒸馏算法对Student模型进行蒸馏。希望能帮助到大家,如果觉得有用欢迎收藏、点赞和转发;如果有问题也可以留言讨论。
本次实战用到的代码和数据集详见:
上一篇:最短路径条数