动手学深度学习【1】——线性回归
创始人
2024-05-28 16:44:02
0

动手学深度学习网址:动手学深度学习

注:本部分只对基础知识进行简单的介绍并附上完整的代码实现,更多内容可参考上述网址。

简述

需要的准备知识

  • 数学的偏导
  • 线性代数

线性模型

回归是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。

线性回归基于几个简单的假设: 首先,假设自变量x和因变量y之间的关系是线性的, 即y可以表示为中元素的x加权和,这里通常允许包含观测值的一些噪声; 其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。
给定一个数据集,线性回归的目标是寻找模型的权重w和偏差b。公式为:
在这里插入图片描述
将权重放到一个向量里面,变成:
在这里插入图片描述

损失函数

使用平方误差:
在这里插入图片描述
其中y是真实的数据。
将上式展开,为:
在这里插入图片描述
最终的目标就是寻找一组参数(w,b),这组参数能最小化在所有训练样本上的总损失,即:
在这里插入图片描述

优化方法

在训练过程中需要不断优化w和b,使得最终的损失达到最小,这就需要一种优化方法,通常使用的式梯度下降方法。
对于线性回归,参数更新的形式为:
在这里插入图片描述
因为在每一次更新参数之前,我们必须遍历整个数据集。 因此,**我们通常会在每次需要计算更新的时候随机抽取一小批样本, 这种变体叫做小批量随机梯度下降。**如上图所示,其中的B就是选取的小批量样本个数,n是学习率。

将上述式子展开,为:
在这里插入图片描述

代码

从头开始实现线性回归

1.生成数据集

我们生成一个包含1000个样本的数据集, 每个样本包含从标准正态分布中采样的2个特征。

import torch
import random
from d2l import torch as d2l
# 生成数据集
def generate_data(w,b,num_examples):# 生成正太分布的数据X = torch.normal(0,1,(num_examples,len(w)))# 进行矩阵乘法y = torch.matmul(X,w) + by += torch.normal(0,0.01,y.shape)return X,y.reshape((-1,1))
# 真实的w
true_w = torch.tensor([2,-3.4])
# 真实的b
true_b = 4.2
# features shape: N * len(W)
# lables shape: N
features,labels = generate_data(true_w,true_b,1000)
print('features:',features[0],'\nlabel:',labels[0])
# 展示生成的数据
d2l.set_figsize()
d2l.plt.scatter(features[:,1].detach().numpy(),labels.detach().numpy(),1)

2.读取数据操作

定义一个data_iter函数, 该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量。

# 小批量读取数据集
def data_iter(batch_size,features,lables):# 获取第一维的大小num_examples = len(features)indices = list(range(num_examples))# 打乱顺序random.shuffle(indices)for i in range(0,num_examples,batch_size):batch_indices = torch.tensor(indices[i:min(i+batch_size,num_examples)])yield features[batch_indices],labels[batch_indices]
# 调用该函数
# 小批量大小为10
batch_size = 10
for X,y in data_iter(batch_size,features,batch_size):print(X,'\n',y)break

3.定义模型相关部分

(1)初始化参数
我们通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重, 并将偏置初始化为0。

(2)定义模型
使用wx+b形式。

(3)损失函数
使用平方损失函数

(4)优化方法
在每一步中,使用从数据集中随机抽取的一个小批量,然后根据参数计算损失的梯度。 接下来,朝着减少损失的方向更新我们的参数。 每一步更新的大小由学习速率lr决定。 因为我们计算的损失是一个批量样本的总和,所以我们用批量大小(batch_size) 来规范化步长,这样步长大小就不会取决于我们对批量大小的选择。

# 初始化模型参数
def init_params():# w服从均值为0,方差为0.01的正太分布,大小为(2,1)w = torch.normal(0,0.01,(2,1),requires_grad = True)b = torch.zeros(1,requires_grad = True)return w,b
# 定义模型
def linear_reg(X,w,b):# wx + breturn torch.matmul(X,w) + b# 定义损失函数
def squared_loss(y_pred,y):return (y_pred - y.reshape(y_pred.shape)) ** 2 / 2# 定义优化算法
def sgd(params,lr,batch_size):# 使梯度计算disablewith torch.no_grad():for param in params:param -= lr * param.grad / batch_size# 手动将梯度设置成 0 ,在下一次计算梯度的时候就不会和上一次相关了param.grad.zero_()

4.训练模型

执行以下循环:

  • 初始化参数
  • 重复以下训练,直到完成
    • 计算梯度 (l.sum().backward())
    • 更新参数(sgd)
# 训练
# 学习率
lr = 0.02
# 迭代次数
num_epoches = 3
net = linear_reg
loss = squared_loss
w,b = init_params()
for epoch in range(num_epoches):for X,y in data_iter(batch_size,features,labels):l = loss(net(X,w,b),y)# 后向传播计算梯度l.sum().backward()sgd([w,b],lr,batch_size)with torch.no_grad():train_l = loss(net(features,w,b),labels)print(f'epoch {epoch + 1},loss {float(train_l.mean())}')print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')

线性回归的框架实现

# 简洁实现
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
from torch import nntrue_w = torch.tensor([2,-3.4])
true_b = 4.2
# 生成数据集
features,labels = d2l.synthetic_data(true_w,true_b,1000)def load_dataset(data_arrs,batch_size,is_train = True):dataset = data.TensorDataset(*data_arrs)return data.DataLoader(dataset,batch_size,shuffle=is_train)batch_size = 10
data_iter = load_dataset((features,labels),batch_size)
# iter构造迭代器
next(iter(data_iter))# 定义模型
net = nn.Sequential(nn.Linear(2,1))
# 初始化参数,注意上面使用的是nn.Sequential,创造的是一个序列,所以net[0]表示我们的网络
net[0].weight.data.normal_(0,0.01)
net[0].bias.data.fill_(0)
# 损失函数
loss = nn.MSELoss()
# 优化算法
trainer = torch.optim.SGD(net.parameters(),lr = 0.03)
# 训练
num_epoches = 3
for epoch in range(num_epoches):for X,y in data_iter:l = loss(net(X),y)# 将梯度重置为0trainer.zero_grad()# 计算梯度l.backward()# 更新所有的参数trainer.step()l = loss(net(features),labels)print(f'epch {epoch + 1} loss {l:f}')
w = net[0].weight.data
b = net[0].bias.data
print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...