【yolov5】将标注好的数据集进行划分(附完整可运行python代码)
创始人
2024-05-26 04:50:36
0

问题描述

准备使用yolov5训练自己的模型,自己将下载的开源数据集按照自己的要求重新标注了一下,然后现在对其进行划分。

问题分析

划分数据集主要的步骤就是,首先要将数据集打乱顺序,然后按照一定的比例将其分为训练集,验证集和测试集。
这里我定的比例是7:1:2。

步骤流程

1、将数据集打乱顺序

数据集有图片和标注文件,我们需要把两种文件绑定然后将其打乱顺序。
首先读取数据后,将两种文件通过zip函数绑定

	each_class_image = []each_class_label = []for image in os.listdir(file_path):each_class_image.append(image)for label in os.listdir(xml_path):each_class_label.append(label)data=list(zip(each_class_image,each_class_label))

然后打乱顺序,再将两个列表分开

    random.shuffle(data)each_class_image,each_class_label=zip(*data)

2、按照确定好的比例将两个列表元素分割

分别用三个列表储存一下图片和标注文件的元素

	train_images = each_class_image[0:int(train_rate * total)]val_images = each_class_image[int(train_rate * total):int((train_rate + val_rate) * total)]test_images = each_class_image[int((train_rate + val_rate) * total):]train_labels = each_class_label[0:int(train_rate * total)]val_labels = each_class_label[int(train_rate * total):int((train_rate + val_rate) * total)]test_labels = each_class_label[int((train_rate + val_rate) * total):]

3、在本地生成文件夹,将划分好的数据集分别保存

这样就保存好了。

    for image in train_images:#print(image)old_path = file_path + '/' + imagenew_path1 = new_file_path + '/' + 'train' + '/' + 'images'if not os.path.exists(new_path1):os.makedirs(new_path1)new_path = new_path1 + '/' + imageshutil.copy(old_path, new_path)for label in train_labels:#print(label)old_path = xml_path + '/' + labelnew_path1 = new_file_path + '/' + 'train' + '/' + 'labels'if not os.path.exists(new_path1):os.makedirs(new_path1)new_path = new_path1 + '/' + labelshutil.copy(old_path, new_path)for image in val_images:old_path = file_path + '/' + imagenew_path1 = new_file_path + '/' + 'val' + '/' + 'images'if not os.path.exists(new_path1):os.makedirs(new_path1)new_path = new_path1 + '/' + imageshutil.copy(old_path, new_path)for label in val_labels:old_path = xml_path + '/' + labelnew_path1 = new_file_path + '/' + 'val' + '/' + 'labels'if not os.path.exists(new_path1):os.makedirs(new_path1)new_path = new_path1 + '/' + labelshutil.copy(old_path, new_path)for image in test_images:old_path = file_path + '/' + imagenew_path1 = new_file_path + '/' + 'test' + '/' + 'images'if not os.path.exists(new_path1):os.makedirs(new_path1)new_path = new_path1 + '/' + imageshutil.copy(old_path, new_path)for label in test_labels:old_path = xml_path + '/' + labelnew_path1 = new_file_path + '/' + 'test' + '/' + 'labels'if not os.path.exists(new_path1):os.makedirs(new_path1)new_path = new_path1 + '/' + labelshutil.copy(old_path, new_path)

运行结果展示

直接运行单个python文件即可。
在这里插入图片描述
运行完毕
去本地查看
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图片和标注文件乱序,且一一对应。

完整代码分享

import os
import shutil
import randomrandom.seed(0)def split_data(file_path,xml_path, new_file_path, train_rate, val_rate, test_rate):each_class_image = []each_class_label = []for image in os.listdir(file_path):each_class_image.append(image)for label in os.listdir(xml_path):each_class_label.append(label)data=list(zip(each_class_image,each_class_label))total = len(each_class_image)random.shuffle(data)each_class_image,each_class_label=zip(*data)train_images = each_class_image[0:int(train_rate * total)]val_images = each_class_image[int(train_rate * total):int((train_rate + val_rate) * total)]test_images = each_class_image[int((train_rate + val_rate) * total):]train_labels = each_class_label[0:int(train_rate * total)]val_labels = each_class_label[int(train_rate * total):int((train_rate + val_rate) * total)]test_labels = each_class_label[int((train_rate + val_rate) * total):]for image in train_images:print(image)old_path = file_path + '/' + imagenew_path1 = new_file_path + '/' + 'train' + '/' + 'images'if not os.path.exists(new_path1):os.makedirs(new_path1)new_path = new_path1 + '/' + imageshutil.copy(old_path, new_path)for label in train_labels:print(label)old_path = xml_path + '/' + labelnew_path1 = new_file_path + '/' + 'train' + '/' + 'labels'if not os.path.exists(new_path1):os.makedirs(new_path1)new_path = new_path1 + '/' + labelshutil.copy(old_path, new_path)for image in val_images:old_path = file_path + '/' + imagenew_path1 = new_file_path + '/' + 'val' + '/' + 'images'if not os.path.exists(new_path1):os.makedirs(new_path1)new_path = new_path1 + '/' + imageshutil.copy(old_path, new_path)for label in val_labels:old_path = xml_path + '/' + labelnew_path1 = new_file_path + '/' + 'val' + '/' + 'labels'if not os.path.exists(new_path1):os.makedirs(new_path1)new_path = new_path1 + '/' + labelshutil.copy(old_path, new_path)for image in test_images:old_path = file_path + '/' + imagenew_path1 = new_file_path + '/' + 'test' + '/' + 'images'if not os.path.exists(new_path1):os.makedirs(new_path1)new_path = new_path1 + '/' + imageshutil.copy(old_path, new_path)for label in test_labels:old_path = xml_path + '/' + labelnew_path1 = new_file_path + '/' + 'test' + '/' + 'labels'if not os.path.exists(new_path1):os.makedirs(new_path1)new_path = new_path1 + '/' + labelshutil.copy(old_path, new_path)if __name__ == '__main__':file_path = "D:/Files/dataSet/drone_images"xml_path = 'D:/Files/dataSet/drone_labels'new_file_path = "D:/Files/dataSet/droneData"split_data(file_path,xml_path, new_file_path, train_rate=0.7, val_rate=0.1, test_rate=0.2)

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...