快速傅里叶算法(FFT)快在哪里?
创始人
2024-05-25 20:05:46
0

目录

前言

1、DFT算法 

2、FFT算法

2.1 分类

 2.2 以基2 DIT(时间抽取) FFT 算法为例

2.2.1 一次分解 

2.2.2 多次分解

 参考


前言

  对信号分析的过程中,为了能换一个角度观察问题,很多时候需要把时域信号波形变换到频域进行分析,这涉及到对信号求傅里叶变换,在计算机中便于处理的是离散信号,因此需要求信号的离散傅里叶变换,但是离散傅里叶变换(DFT--Discrete Fourier transform)的算法时间复杂度O(n2),为了能提高计算的速度,很多时候我们进行的变换为快速傅里叶变换(FFT--Fast Fourier Transform),其算法时间复杂度O(nlogn),大大提高了计算的速度,那么该快速傅里叶变换算法的快在哪里?中间进行了什么操作,我们下面具体分析。

在之前的一篇文章中我们提到了DFT和FFT的关系

频谱、功率谱、倒频谱_heda3的博客-CSDN博客_倒频谱

1、DFT算法 

DFT的数学计算表达式为:

长度为N的离散时间信号x(n),做N点离散傅里叶变换如下:

  X(k)=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi}{N}kn}=\sum_{n=0}^{N-1}x(n)W_{N}^{kn}

其中k=0,1,2,...N-1

其中W_{N}=e^{-j2\frac{ \pi }{N}}

运算量表述为:

依据上述公式可知,做1点DFT,需要N次复数乘法、N-1次复数加法

做N点DFT,则需要N*N次复数乘法、N*(N-1)次复数加法

当N为256点时,所需运算量65536次复数乘法、65280次复数加法

N=512点时,所需运算量262144次复数乘法、261632次复数加法

N=1024点时,所需运算量1048576次复数乘法、1047552次复数加法

可见当N点从256到1024点变化时,DFT算法的计算量从万级到百万级。

2、FFT算法

2.1 分类

分为按照时间抽取(在时间上将信号长度逐步减少)和按照频率抽取

依据抽取长度分为基2、基4

基2 DIT(时间抽取) FFT  也称为Cooley-Tukey algorithm 库利图基算法

基2 DIF(频率抽取) FFT

基4 FFT

分裂基FFT(包含两种不同基的混合计算)

 2.2 以基2 DIT(时间抽取) FFT 算法为例

基于基2时间抽取将信号划分为两部分分别计算FFT(信号长度N要求为N=2的整数倍):

X(k)=\sum_{n=0}^{N-1}x(n)W_{N}^{kn}=\sum_{n=0}^{N/2-1}x(2n)W_{N}^{k2n}+\sum_{n=0}^{N/2-1}x(2n+1)W_{N}^{k(2n+1)}                          1)

其中k=0,1,2,...N-1

复数运算的特性

W_{N}^{kn}=e^{-j2\frac{ \pi }{N}kn}

对称性: 

 W_{N}^{nk}=W_{N}^{-nk}=W_{N}^{(N-n)k}

周期性:

 W_{N}^{nk}=W_{N}^{(n+N)k}

可约性:

 W_{N}^{nk}=W_{mN}^{mnk} =W_{N/m}^{nk/m}

常见的计算 

W_{N}^{0}=1

W_{N}^{N/2}=-1

W_{N}^{N/4}=-j

2.2.1 一次分解 

依据上述复数运算的特性的可约性,则1)化简为:

X(k)=\sum_{n=0}^{N-1}x(n)W_{N}^{kn}=\sum_{n=0}^{N/2-1}x(2n)W_{N/2}^{kn}+W_{N}^{k}\sum_{n=0}^{N/2-1}x(2n+1)W_{N/2}^{kn}     2)

             X(k)=\sum_{n=0}^{N-1}x(n)W_{N}^{kn}=X_{0}(k)+W_{N}^{k}X_{1}(k)                                                  3)

              其中k=0,1,2,...N-1

利用特性:

W_{N}^{k+N/2}=W_{N}^{N/2}W_{N}^{k}=-W_{N}^{k}

则3)可表述为:

                            X(k)=X_{0}(k)+W_{N}^{k}X_{1}(k)                                                 4)

X(k+N/2)=X_{0}(k)-W_{N}^{k}X_{1}(k)                    

                               其中k=0,1,2,...N/2-1 

用如下的蝶形方式表述为3式和4式:

 两次复数运算:

 一次复数运算:

也即是N点DFT包含:2个 N/2点DFT和N/2个蝶形运算,一个蝶形运算包含一次复数乘法和两次复数加法

上述:做N点DFT,则需要N*N次复数乘法、N*(N-1)次复数加法

则2个N/2点DFT,则需要2*(N/2*N/2)=N^{^{2}}/2次复数乘法,2*(N/2)*(N/2-1)=N(N/2-1)次复数加法运算;蝶形运算次数:N/2次复数乘法,N次复数加法。

因此总的复数乘法计算:N(N+1)/2    总的复数加法次数:N^{^{2}}/2

通过上述的一次分解前后的运算量分析,可见经过一次分解后(信号按照奇偶数将N点DFT划分为N/2点DFT,并将两个N/2点DFT组合的方式),其运算量降低了一半,计算效率得到了提升。

2.2.2 多次分解

当N一直分解下去直到DFT的点数为2时,最小的计算单元为一个基本的蝶形运算,因此由于信号长度最初定义为N=2的整数倍,也即是N=2^{^{M}},因此N点DFT运算可以分解为M级蝶形运算,每一级为N/2个蝶形运算。

通过上述的FFT计算方法,则N点FFT运算需要M*N/2个蝶形运算,复数乘法次数:

N/2*M=N/2*log_{2}^{N}

复数加法次数:

   N/2*2*M=N*log_{2}^{N}

 

当N点从256到1024点变化时,FFT算法的计算量从千级到万级。可见FFT运算速度较DFT得到较大的提升。

    现在我们可以明显知道FFT到底快在哪里,因为经过对信号的逐级分解,将大点DFT划分为小点DFT计算,也即是N点FFT若基于基2抽取方法,则需要log_{2}^{N}级分解,N点DFT最终划分为2点DFT计算,并结合指数运算的特性,减少冗余计算,使得运算量大为减小。

 参考

【1】《数字信号处理》

【2】如何利用FFT(基2时间以及基2频率)信号流图求序列的DFT

 

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...