🚀🚀🚀大家觉不错的话,就恳求大家点点关注,点点小爱心,指点指点🚀🚀🚀
矩阵的秩
定义4:
在mxn矩阵A中,任取k行与k列(k<=m,k<=n),位于这些行列交叉处的k^2个元素,不改变他们在A的位置次序而得的k阶行列式,称为矩阵A的k阶子式
mxn矩阵A的k阶子式共有(C[m])^k·(C[n])^k
引理:A~B,则A与B的最高阶数相等
定义5:
设在矩阵A中有一个不等于0的r阶子式D,且所有的r+1阶子式(如果存在的话)全等于0,因此把r阶非零子式称为最高阶非零子式,数r称为矩阵A的秩,记作R(A).
定理1:R(A^T)=R(A)
注:对于n阶矩阵A,由于A的n阶子式只有一个|A|!=0时R(A)=n,当|A|=0时R(A)
注:矩阵的初等变换作为一种运算,其深刻意义在于它不改变矩阵的秩,,即定理2:
若A~B,则R(A)=R(B).
推论:若可逆矩阵P,Q,使得PAQ=B,则R(A)=R(B),可逆矩阵不会影响矩阵的秩。
矩阵秩的求法
(1)矩阵A的最高阶非零子式的阶数r,称为矩阵A的秩,记作R(A)=r。
(2) R(A)= r<=>A的最简形含r个非零行
矩阵的基本性质:
(1)0<=R(A[mxn])<=min|m,n|(矩阵的秩是不会超过它的行和列)
(2)R(A^T)=R(A)
(3)若A~B,则R(A)=R(B)
(4)若P,Q可逆,则R(PAQ)=R(A)
常用的矩阵的秩的性质
(5)max|R(A),R(B)|<=R(A,B)<=R(A)+R(B)
(6)R(A+B)<=R(A)+R(B) (这里注意一下,R(A+B)不是R(A,B))
(7)R(AB)<=min|R(A),R(B)|
(8)A[mxn]B[nxl]=O,则R(A)+R(B)
线性方程组的解
定理3 n元线性方程组Ax=b(方程式的个数)
(i)无解的充分必要条件是R(A)
(ii)有唯一解的充分必要条件是R(A)=R(A,b)=n(行列式的值不等于0)
(iii)有无限多解的充分必要条件是R(A)=R(A,b)
定理4 n元齐次线性方程组Ax=0有非零解充要条件是R(A)
定理5 线性方程组Ax=b有解的充分必要条件是R(A)=R(A,b)
定理6 矩阵方程AX=B有解的充要条件是R(A)=R(A,B)
定理7 设AB=C,R(AB)<=min|R(A),R(B)|
第四章 向量组的线性相关性
向量组及其线性组合
定义1:n个有次序的数a1,a2,…,a[n],所组成的数组称为n维向量;这n个数称为该向量的n个分量,第i个数a[i]称为第i个分量
向量不特殊说明,就是列向量
若干个同维数的列向量(或同维数的行向量)所组成的集合叫向量组
定义2:给定向量组A(a[1],a[2],..,a[m]),对于任何一组实数k[1],k[2],…,k[m],表达式
k[1]a[1]+k[2]a[2]+…+k[m]a[m]
称为向量组A的一个线性组合,k[1],k[2],…,k[m]称为这个线性组合的系数
向量b能由向量组A线性表示,也就是方程组
x[1]a[1]+x[2]a[2]+…+x[m]a[m]=b
定理1 向量b能由向量组A:a[1],a[2],…,a[m]线性表示的充分必要条件是矩阵A=(a[1],a[2],…,a[m])的秩等于矩阵B=(a[1],a[2],…,a[m],b)的秩
定义3:设有两个向量组A:a[1],a[2],…,a[m]及B:b[1],b[2],…,b[l],若B组中的每个向量都能由向量组A线性表示,则称向量组B能由向量组A线性表示。若向量组A与向量组B能相互线性表示,则称这两个向量组等价。
定理2 向量组B:(b[1],b[2],…,b[l])能由向量组A:A:(a[1],a[2],…,a[m])线性表示的充分必要条件是,R(A)=R(A,B)
推论:向量组A:a[1],a[2],…,a[m]与向量组B:b[1],b[2],…,b[l]等价的充分必要条件是
R(A)=R(B)=R(A,B)
其中A和B是向量组A和向量组B所构成的矩阵
定理3 向量组B:(b[1],b[2],…,b[l]能由向量组A:a[1],a[2],…,a[m]线性表示,则R(B)<=R(A)
🌸🌸🌸如果大家还有不懂或者建议都可以发在评论区,我们共同探讨,共同学习,共同进步。谢谢大家! 🌸🌸🌸