最小二乘支持向量机”在学习偏微分方程 (PDE) 解方面的应用(Matlab代码实现)
创始人
2024-05-25 11:51:10
0

       目录

💥1 概述

📚2 运行结果

🎉3 参考文献

👨‍💻4 Matlab代码


💥1 概述

本代码说明了“最小二乘支持向量机”在学习偏微分方程 (PDE) 解方面的应用。提供了一个示例,并将获得的结果与精确的解决方案进行比较。

📚2 运行结果

主函数部分代码:

clc; clear all; close all

warning('off','all')

a0=0;

b0=1;

n=11;

h=(b0-a0)/n;

[X1,Y1]=meshgrid(a0+h:h:b0-h);

W=[];

for i=1:size(X1,2)

    Z=[X1(:,i),Y1(:,1)];

    W=[W ; Z];

end

subplot(2,3,1)

plot(W(:,1),W(:,2),'o')

hold on

[X,Y]=meshgrid(a0:h:b0);

W2=[];

for i=1:size(X,2)

    Z=[X(:,i),Y(:,1)];

    W2=[W2 ; Z];

end

L1=[];

for i=1:n+1

    L1=[L1 ; W2(i,:)];

end

L2=[];

for i=n*(n+1)+1:size(W2,1)

    L2=[L2 ; W2(i,:)];

end

L3=[L1(:,2) L1(:,1)];

L4=[L2(:,2) L2(:,1)];

plot(L1(:,1),L1(:,2),'s')

plot(L2(:,1),L2(:,2),'o')

plot(L3(:,1),L3(:,2),'p')

plot(L4(:,1),L4(:,2),'+')

title('Training points','Fontsize',14)

xlabel('x')

ylabel('y')

%% 

f=@(s,v) exp(-s).*(s-2+v.^3+6*v); % right hand side of the given PDE

gamma=10^14; % the regularization parameter

sig=0.95;  % kernel bandwidth

K=KernelMatrix(W,'RBF_kernel',sig);

x=W(:,1);

y=W(:,2);

xx1=x*ones(1,size(x,1));

xx2=x*ones(1,size(x,1));

cof1=2*(xx1-xx2')/(sig);

xx3=y*ones(1,size(y,1));

xx4=y*ones(1,size(y,1));

cof2=2*(xx3-xx4')/(sig);

Kxx=(-2/sig)*K + (cof1.^2) .* K;

Kyy=(-2/sig)*K + (cof2.^2) .* K;

Kx2x2=(   ( 12/(sig^2) - (12/sig)* (cof1.^2) +  (cof1.^4) ) .*K);

Ky2y2=(   ( 12/(sig^2) - (12/sig)* (cof2.^2) +  (cof2.^4) ) .*K);

Kx2y2=(   ( 4/(sig^2) - (2/sig)* (cof1.^2) - (2/sig)* (cof2.^2)  +  (cof1.^2).*(cof2.^2)  ) .*K);

Ky2x2=(   ( 4/(sig^2) - (2/sig)* (cof1.^2) - (2/sig)* (cof2.^2)  +  (cof1.^2).*(cof2.^2)  ) .*K);

K1T= Kx2x2+ Kx2y2 + Ky2x2+ Ky2y2;

m=size(K1T,1);

%*******************************************************************

KL1=KernelMatrix(W,'RBF_kernel',sig,L1);

L1b1x=L1(:,1)*ones(1,size(x,1));

L1b2x=x*ones(1,size(L1(:,1),1));

cofL1x=-2*(L1b1x'-L1b2x)/(sig);

L1b1y=L1(:,2)*ones(1,size(y,1));

L1b2y=y*ones(1,size(L1(:,2),1));

cofL1y=-2*(L1b1y'-L1b2y)/(sig);

KL1xx=(-2/sig)*KL1 + (cofL1x.^2) .* KL1;

KL1yy=(-2/sig)*KL1 + (cofL1y.^2) .* KL1;

KL1T= KL1xx+ KL1yy;

%*************************************************

KL2=KernelMatrix(W,'RBF_kernel',sig,L2);

L2b1x=L2(:,1)*ones(1,size(x,1));

L2b2x=x*ones(1,size(L2(:,1),1));

cofL2x=-2*(L2b1x'-L2b2x)/(sig);

L2b1y=L2(:,2)*ones(1,size(y,1));

L2b2y=y*ones(1,size(L2(:,2),1));

cofL2y=-2*(L2b1y'-L2b2y)/(sig);

KL2xx=(-2/sig)*KL2 + (cofL2x.^2) .* KL2;

KL2yy=(-2/sig)*KL2 + (cofL2y.^2) .* KL2;

KL2T= KL2xx+ KL2yy;

%*************************************************

KL3=KernelMatrix(W,'RBF_kernel',sig,L3);

L3b1x=L3(:,1)*ones(1,size(x,1));

L3b2x=x*ones(1,size(L3(:,1),1));

cofL3x=-2*(L3b1x'-L3b2x)/(sig);

L3b1y=L3(:,2)*ones(1,size(y,1));

L3b2y=y*ones(1,size(L3(:,2),1));

cofL3y=-2*(L3b1y'-L3b2y)/(sig);

KL3xx=(-2/sig)*KL3 + (cofL3x.^2) .* KL3;

KL3yy=(-2/sig)*KL3 + (cofL3y.^2) .* KL3;

KL3T= KL3xx+ KL3yy;

%*************************************************

KL4=KernelMatrix(W,'RBF_kernel',sig,L4);

L4b1x=L4(:,1)*ones(1,size(x,1));

L4b2x=x*ones(1,size(L4(:,1),1));

cofL4x=-2*(L4b1x'-L4b2x)/(sig);

L4b1y=L4(:,2)*ones(1,size(y,1));

L4b2y=y*ones(1,size(L4(:,2),1));

cofL4y=-2*(L4b1y'-L4b2y)/(sig);

KL4xx=(-2/sig)*KL4 + (cofL4x.^2) .* KL4;

KL4yy=(-2/sig)*KL4 + (cofL4y.^2) .* KL4;

KL4T= KL4xx+ KL4yy;

%*************************************************

KL1L1=KernelMatrix(L1,'RBF_kernel',sig,L1);

KL2L1=KernelMatrix(L2,'RBF_kernel',sig,L1);

KL3L1=KernelMatrix(L3,'RBF_kernel',sig,L1);

KL4L1=KernelMatrix(L4,'RBF_kernel',sig,L1);

%*************************************************

KL1L2=KernelMatrix(L1,'RBF_kernel',sig,L2);

KL2L2=KernelMatrix(L2,'RBF_kernel',sig,L2);

KL3L2=KernelMatrix(L3,'RBF_kernel',sig,L2);

KL4L2=KernelMatrix(L4,'RBF_kernel',sig,L2);

%************************************************

KL1L3=KernelMatrix(L1,'RBF_kernel',sig,L3);

KL2L3=KernelMatrix(L2,'RBF_kernel',sig,L3);

KL3L3=KernelMatrix(L3,'RBF_kernel',sig,L3);

KL4L3=KernelMatrix(L4,'RBF_kernel',sig,L3);

%************************************************

KL1L4=KernelMatrix(L1,'RBF_kernel',sig,L4);

KL2L4=KernelMatrix(L2,'RBF_kernel',sig,L4);

KL3L4=KernelMatrix(L3,'RBF_kernel',sig,L4);

KL4L4=KernelMatrix(L4,'RBF_kernel',sig,L4);

%************************************************

A= [K1T+1/gamma*eye(m) , KL1T , KL2T, KL3T , KL4T , zeros((n-1)^2,1) ;....

    KL1T' , KL1L1' , KL2L1' , KL3L1' , KL4L1' , ones(n+1,1) ;...

    KL2T' , KL1L2' , KL2L2' , KL3L2' , KL4L2' , ones(n+1,1) ;...

    KL3T' , KL1L3' , KL2L3' , KL3L3' , KL4L3' , ones(n+1,1) ;...

    KL4T' , KL1L4' , KL2L4' , KL3L4' , KL4L4' , ones(n+1,1) ;...

    zeros((n-1)^2,1)' , ones(n+1,1)' , ones(n+1,1)' , ones(n+1,1)' , ones(n+1,1)' , 0 ];

B=[f(W(:,1),W(:,2)); L1(:,2).^3 ; (1+L2(:,2).^3)*exp(-1)  ;  L3(:,1).*exp(-L3(:,1)) ; exp(-L4(:,1)).*(L4(:,1)+1) ; 0 ];

result=A\B;

alpha=result(1:m);

beta1=result(m+1:m+n+1);

beta2=result(m+n+2:m+2*n+2);

beta3=result(m+2*n+3:m+3*n+3);

beta4=result(m+3*n+4:m+4*n+4);

b=result(end);

%% Result for training points

yhat= (Kxx' + Kyy')* alpha + KL1 * beta1 + KL2* beta2 + KL3* beta3 + KL4* beta4 +b;

yexa=@(p,q) exp(-p).*(p+q.^3);

yexact=yexa(W(:,1),W(:,2));

Error1= yexact- yhat;

MAX_Absolute_error_training=max(abs(yhat-yexact));

RMSE_training=sqrt(mse(yhat-yexact));

fprintf('-------  training set ------------------\n\n')

fprintf('Max Abs Error on training set=%d\n',MAX_Absolute_error_training)

fprintf('RMSE on training set=%d\n\n',RMSE_training)

subplot(2,3,2)

plot3(W(:,1),W(:,2),yhat,'pr')

hold all

plot3(W(:,1),W(:,2),yexact,'sb')

title('Approximate and exact solution for training points','Fontsize',14)

xlabel('x')

ylabel('y')

zlabel('u')

NError=reshape(Error1,size(X1,1),size(Y1,1));

Xn=linspace(0,1,n-1);

Yn=linspace(0,1,n-1);

subplot(2,3,3)

surface(Xn,Yn,NError)

shading interp

xlabel('y','Fontsize',14)

ylabel('x','Fontsize',14)

set(gca,'Fontsize',20)

grid on

h=colorbar;

set(h,'fontsize',14);

title('Absolute errors for training set','Fontsize',14)

%% Result for test points

a0=0;

b0=1;

n=31;

h=(b0-a0)/n;

[X2,Y2]=meshgrid(a0+h:h:b0-h);

WT=[];

for i=1:size(X2,2)

    Z=[X2(:,i),Y2(:,1)];

    WT=[WT ; Z];

end

subplot(2,3,4)

plot(WT(:,1),WT(:,2),'o')

title('Test points','Fontsize',14)

xlabel('x')

ylabel('y')

Kt=KernelMatrix(W,'RBF_kernel',sig,WT);

xt=WT(:,1);

yt=WT(:,2);

xx1t=x*ones(1,size(xt,1));

xx2t=xt*ones(1,size(x,1));

cof1t=-2*(xx1t-xx2t')/(sig);

xx3t=y*ones(1,size(yt,1));

xx4t=yt*ones(1,size(y,1));

cof2t=-2*(xx3t-xx4t')/(sig);

Ktestxx=(-2/sig)*Kt + (cof1t.^2) .* Kt;

Ktestyy=(-2/sig)*Kt + (cof2t.^2) .* Kt;

KKlte1=KernelMatrix(WT,'RBF_kernel',sig,L1);

KKlte2=KernelMatrix(WT,'RBF_kernel',sig,L2);

KKlte3=KernelMatrix(WT,'RBF_kernel',sig,L3);

KKlte4=KernelMatrix(WT,'RBF_kernel',sig,L4);

Ytest= (Ktestxx' + Ktestyy')* alpha + KKlte1 * beta1 + KKlte2* beta2 + KKlte3* beta3 + KKlte4* beta4 + b;

yextest=yexa(WT(:,1),WT(:,2));

subplot(2,3,5)

plot3(WT(:,1),WT(:,2),Ytest,'pr')

hold on

plot3(WT(:,1),WT(:,2),yextest,'sb')

title('Approximate and exact solution for test points','Fontsize',14)

xlabel('x')

ylabel('y')

zlabel('u')

yextest=yexa(WT(:,1),WT(:,2));

MAX_Absolute_error_test=max(abs(Ytest-yextest));

RMSE_test=sqrt(mse(Ytest-yextest));

fprintf('-------  test set ------------------\n\n')

fprintf('Max Abs Error on test set=%d\n',MAX_Absolute_error_test)

fprintf('RMSE on test set=%d\n\n',RMSE_test)

fprintf('-------  Finished -----------------------\n\n')

Error= Ytest - yextest ;

Ytnew=reshape(Ytest,size(X2,1),size(Y2,1));

Ytexa=reshape(yextest,size(X2,1),size(Y2,1));

NError=reshape(Error,size(X2,1),size(Y2,1));

Xn=linspace(0,1,n-1);

Yn=linspace(0,1,n-1);

subplot(2,3,6)

surface(Xn,Yn,NError)

shading interp

xlabel('y','Fontsize',14)

ylabel('x','Fontsize',14)

set(gca,'Fontsize',20)

grid on

h=colorbar;

set(h,'fontsize',14);

title('Absolute errors for test set','Fontsize',14)

🎉3 参考文献

[1] Mehrkanoon S., Falck T., Suykens J.A.K., "Approximate Solutions to Ordinary Differential Equations Using Least Squares Support Vector Machines",IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 9, Sep. 2012, pp. 1356-1367.

[2] Mehrkanoon S., Suykens J.A.K.,"LS-SVM approximate solution to linear time varying descriptor systems", Automatica, vol. 48, no. 10, Oct. 2012, pp. 2502-2511.

[3] Mehrkanoon S., Suykens J.A.K., "Learning Solutions to Partial Differential Equations using LS-SVM",Neurocomputing, vol. 159, Mar. 2015, pp. 105-116.

👨‍💻4 Matlab代码 

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...