【深度学习】人脸识别工程化落地
创始人
2024-05-25 08:21:46
0

文章目录

  • 前言
  • 1、facenet
  • 2、使用
    • 2.1.其它blog
    • 2.2 实践
  • 总结


前言

老早以前就希望能写一篇关于人脸识别的工程化落地的案例,一年前做疲劳驾驶时使用的dlib插件,它封装好了,人脸检测、对齐、相似度计算三个部分,就是插件比较难装,但同时也少了很多细节.
今天我们来做一些高级一点的, facenet网络


1、facenet

谷歌人脸识别算法,发表于 CVPR 2015,利用相同人脸在不同角度等姿态的照片下有高内聚性,不同人脸有低耦合性,提出使用 cnn + triplet mining 方法,在 LFW 数据集上准确度达到 99.63%。
测试时只需要计算人脸特征EMBEDDING,然后计算距离使用阈值即可判定两张人脸照片是否属于相同的个体。
在这里插入图片描述
简单来讲,在使用阶段,facenet即是:
1、输入一张人脸图片
2、通过深度卷积网络提取特征
3、L2标准化
4、得到一个长度为128特征向量。

2、使用

2.1.其它blog

其它人在使用中一般是这样的

    #---------------------------------------------------##   检测图片#---------------------------------------------------#def detect_image(self, image_1, image_2):#---------------------------------------------------##   图片预处理,归一化#---------------------------------------------------#with torch.no_grad():image_1 = resize_image(image_1, [self.input_shape[1], self.input_shape[0]], letterbox_image=self.letterbox_image)image_2 = resize_image(image_2, [self.input_shape[1], self.input_shape[0]], letterbox_image=self.letterbox_image)photo_1 = torch.from_numpy(np.expand_dims(np.transpose(preprocess_input(np.array(image_1, np.float32)), (2, 0, 1)), 0))photo_2 = torch.from_numpy(np.expand_dims(np.transpose(preprocess_input(np.array(image_2, np.float32)), (2, 0, 1)), 0))if self.cuda:photo_1 = photo_1.cuda()photo_2 = photo_2.cuda()#---------------------------------------------------##   图片传入网络进行预测#---------------------------------------------------#output1 = self.net(photo_1).cpu().numpy()output2 = self.net(photo_2).cpu().numpy()#---------------------------------------------------##   计算二者之间的距离#---------------------------------------------------#l1 = np.linalg.norm(output1 - output2, axis=1)# plt.subplot(1, 2, 1)# plt.imshow(np.array(image_1))# plt.subplot(1, 2, 2)# plt.imshow(np.array(image_2))# plt.text(-12, -12, 'Distance:%.3f' % l1, ha='center', va= 'bottom',fontsize=11)# plt.show()return l1

核心思想是:传入两张图片,计算距离,设置阈值判断是否是同一个人.
可是,这种放在工程上,比如人脸开门是不行的,所谓人脸识别,必须有一个人脸库,送入一张图片和人脸库的所有图片进行遍历比对,挑出相似度最高的一张图片,和阈值比对,决定是否开门,并留存记录.

那肯定不能次次遍历人脸库啊,所以人脸库的图片要先转出特征向量的collection,存起来, 送入一张图片后,用模型抽取向量特征,和collections里面的向量比较.
如果人脸库太大,比如几万张特征,我们可以分batch存,每个batch找出最合适的,有点像桶排序,并且并行起来计算,是不是比较有意思.

2.2 实践

    #---------------------------------------------------##   保存人脸库特征#---------------------------------------------------#def save_to_tensor(self):#---------------------------------------------------##   图片预处理,归一化#---------------------------------------------------#path_dir = "./img"file_name_list = os.listdir(path_dir)img_feature = {}with torch.no_grad():for file_name in file_name_list:image_1 = Image.open(os.path.join(path_dir,file_name))image_1 = resize_image(image_1, [self.input_shape[1], self.input_shape[0]], letterbox_image=self.letterbox_image)photo_1 = torch.from_numpy(np.expand_dims(np.transpose(preprocess_input(np.array(image_1, np.float32)), (2, 0, 1)), 0))if self.cuda:photo_1 = photo_1.cuda()                   #---------------------------------------------------##   图片传入网络进行预测#---------------------------------------------------#output1 = self.net(photo_1).cpu().numpy()img_feature[file_name] = output1print(img_feature)with open("img_feature.txt", "wb") as file:pickle.dump(img_feature, file)return None

经过这些代码,把./img/ 下的人脸库向量都以二进制的方式存入了文件中.
送入一张图片,只需要,将图片送入模型,获取当前人的人脸信息,然后和人脸库的向量比较,

    def get_from_face_collection(self):input_file = "img/1_001.jpg"image_1 = Image.open(input_file)image_1 = resize_image(image_1, [self.input_shape[1], self.input_shape[0]], letterbox_image=self.letterbox_image)with torch.no_grad():photo_1 = torch.from_numpy(np.expand_dims(np.transpose(preprocess_input(np.array(image_1, np.float32)), (2, 0, 1)), 0))if self.cuda:photo_1 = photo_1.cuda()            #---------------------------------------------------##   图片传入网络进行预测#---------------------------------------------------#output1 = self.net(photo_1).cpu().numpy()f = open('img_feature.txt','rb')img_feature_json = pickle.load(f)distance_map = {}for img_name, featrue_map in img_feature_json.items():l1 = np.linalg.norm(output1 - featrue_map, axis=1)distance_map[img_name] = l1print(distance_map)

distance_map 就是你说要的结果集,然后做个排序,找到top1 和阈值比对即可
git:https://github.com/justinge/facenet_pytorch.git

总结

还有用milivus向量库的,先挖个坑,最终工程化一个到位的.

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...