动态规划-背包问题
创始人
2024-05-25 07:08:07
0

文章目录

  • 一、背包问题
    • 1. 背包问题简介
    • 2. 背包问题解决方法
  • 二、01 背包问题
    • 1. 实现思路
    • 2. 实现代码
  • 三、完全背包问题
    • 1. 实现思路
    • 2. 实现代码
  • 四、多重背包问题(一)
    • 1. 实现思路
    • 2. 实现代码
  • 五、多重背包问题(二)
    • 1. 实现思路
    • 2. 实现代码
  • 六、分组背包问题
    • 1. 实现思路
    • 2. 实现代码

一、背包问题

1. 背包问题简介

  • 背包问题可以理解为,给定一个背包容量 target,再给定一个数组 nums(用以表示物品),能否按一定方式选取 nums 中的元素得到 target。
  • 这里需要注意的有以下几点:
  • (1) 背包容量 target 和物品 nums 的类型可能是数,也可能是字符串。
  • (2) target 可能题目已经给出(显式),也可能是需要我们从题目的信息中挖掘出来(非显式)(常见的非显式 target 比如 sum/2 等)。
  • (3) 选取方式有常见的一下几种:每个元素选一次/每个元素选多次/选元素进行排列组合 那么对应的背包问题就是下面我们要讲的背包分类。
  • 背包问题主要可以分为四类,分别是:01 背包问题,完全背包问题,多重背包问题和分组背包问题。
  • (1) 01 背包问题
  • 01 背包问题是一种非常经典的背包问题。
  • 01 背包问题主要是给定一个背包容量 VVV,再给定 NNN 件物品,每个物品有两种属性,分别是体积 viv_ivi​ 和价值(权重) wiw_iwi​,每件物品最多可以使用一次(即不是 0 次就是 1 次两种选择)。
  • 问题是要在背包能装下的情况下,所挑出的物品总价值最大。
  • (2) 完全背包问题
  • 完全背包问题每件物品有无限个,只要背包的体积够用,就可以无限装同一个物品。
  • (3) 多重背包问题
  • 每个物品最多有 sis_isi​ 个,包含一个朴素版和优化版。
  • (4) 分组背包问题
  • 有 NNN 组物品,每一组物品有若干个,每组物品当中只可以选一个,在此限制条件下求物品的最大价值。
  • 上述的四种问题都是在背包体积足够的情况下,求解所能容纳物品的最大价值,这里需要注意的是,背包不一定非要装满。

2. 背包问题解决方法

  • 对于上述问题,我们常使用动态规划解决此类问题。
  • 动态规划总共包括两大部分,分别是状态表示(判断是几维,两维就是 f(i,j)f(i,j)f(i,j),每一个状态的含义是什么)和状态计算(如何计算出每一个 f(i,j)f(i,j)f(i,j))。
  • 动态规划的优化通常都是对代码或者计算方程进行等价变化。
  • f(i,j)f(i,j)f(i,j) 表示的选择方法只指从前 iii 个物品中选和总体积不超过 jjj。
  • 状态表示可分为集合(每一个状态表示的都是一个集合)和属性(包括最大值,最小值,元素的数量,我们的背包问题就是属性当中的最大值)。
  • 状态计算对应的是集合的划分(每一个元素当前只会属于一个集合,每一个元素都存在),将 f(i,j)f(i,j)f(i,j) 划分为若干个子集和,每一个子集合都可以由更小的子集合表示。

在这里插入图片描述

二、01 背包问题

题目描述

有 NNN 件物品和一个容量是 VVV 的背包。每件物品只能使用一次。
第 iii 件物品的体积是 viv_ivi​,价值是 wiw_iwi​。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,NNN,VVV,用空格隔开,分别表示物品数量和背包容积。
接下来有 NNN 行,每行两个整数 vi,wiv_i,w_ivi​,wi​,用空格隔开,分别表示第 iii 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0 0

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例

8

具体实现

1. 实现思路

  • 01 背包问题的集合划分是一种非常经典的划分方法,可整体划分为两部分,不包含 iii 和包含 iii。
  • 不包含 iii 可以理解为,从 1到i−11到i-11到i−1 当中选取物品,总体积不大于 jjj,该集合的最大值就是 f(i−1,j)f(i-1,j)f(i−1,j)。
  • 包含 iii 可以理解为,从 1到i1到i1到i 当中选取物品,总体积不大于 jjj,该集合的最大值直接求取的困难很大,我们可以曲线救国,先将所有选法当中的第 iii 个物品去掉(最大的那部分是依旧是最大的),便转换为从 1到i−11到i-11到i−1 当中选取物品,总体积不大于 j−vij-v_ij−vi​,此时所有选法的最大值就是 f(i−1,j−vi)f(i-1,j-v_i)f(i−1,j−vi​),但由于我们去掉过第 iii 个物品,因此,原本的最大值就是 f(i−1,j−vi)+wif(i-1,j-v_i)+w_if(i−1,j−vi​)+wi​。
  • 那么,最后所有的最大值就是 max(f(i−1,j),f(i−1,j−vi)+wi)max(f(i-1,j),f(i-1,j-v_i)+w_i)max(f(i−1,j),f(i−1,j−vi​)+wi​)。
  • 上述采用的是二维实现方法,对此,可以使用滚动数组将二维降阶为一维。

2. 实现代码

#include using namespace std;const int N = 1010;//n, m表示物品种数和背包体积
int n, m;
//v[N], w[N]表示物品的体积和价值
int v[N], w[N];
//f[N][N]表示总价值
int f[N][N];int main()
{cin >> n >> m;for (int i = 1; i <= n; i ++ ){cin >> v[i] >> w[i];}//二维实现方法for (int i = 1; i <= n; i ++ ){for (int j = 0; j <= m; j ++ ){f[i][j] = f[i - 1][j];if (j >= v[i]) //如果可以装下当前第i个物品{f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);}}}            cout << f[n][m] << endl;return 0;
}

三、完全背包问题

题目描述

有 NNN 种物品和一个容量是 VVV 的背包,每种物品都有无限件可用。
第 iii 种物品的体积是 viv_ivi​,价值是 wiw_iwi​。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,NNN,VVV,用空格隔开,分别表示物品种数和背包容积。
接下来有 NNN 行,每行两个整数 vi,wiv_i,w_ivi​,wi​,用空格隔开,分别表示第 iii 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0 0

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例

10

具体实现

1. 实现思路

  • 完全背包问题和 01 背包问题的区别在于完全背包问题当中的物品可以被选择无数次。
  • 完全背包问题可以选择使用一维或二维进行解决,如果直接使用与 01 背包问题相同的方法是三个 for 循环,此时会超时,就需要进行优化。
  • 那么,f[i]f[i]f[i] 就表示体积是 iii 的情况下,最大价值是多少(状态表示)。
  • f[0……m]f[0……m]f[0……m] 当中的最大值就是我们所求的结果。

2. 实现代码

#include using namespace std;const int N = 1010;//n, m表示物品数量和背包体积
int n, m;
//v[N], w[N]表示物品的体积和价值
int v[N], w[N];
//f[N]表示总价值
int f[N];int main()
{cin >> n >> m;for (int i = 1; i <= n; i ++ ){cin >> v[i] >> w[i];}for (int i = 1; i <= n; i ++ ){for (int j = v[i]; j <= m; j ++ ){f[j] = max(f[j], f[j - v[i]] + w[i]);}}cout << f[m] << endl;return 0;
}

四、多重背包问题(一)

题目描述

有 NNN 种物品和一个容量是 VVV 的背包。
第 iii 种物品最多有 sis_isi​ 件,每件体积是 viv_ivi​,价值是 wiw_iwi​。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,NNN,VVV,用空格隔开,分别表示物品种数和背包容积。
接下来有 NNN 行,每行三个整数 vi,wi,siv_i,w_i,s_ivi​,wi​,si​,用空格隔开,分别表示第 iii 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0 0

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例

10

具体实现

1. 实现思路

  • 多重背包问题与上述两种背包问题的区别在于每个物品最多有 sis_isi​ 个。
  • 此题与 01 背包问题基本相同。

2. 实现代码

#include using namespace std;const int N = 110;//n, m表示物品种数和背包体积
int n, m;
//v[N], w[N],s[N]表示物品的体积,价值,数量
int v[N], w[N], s[N];
//f[N][N]表示价值
int f[N][N];int main()
{cin >> n >> m;for (int i = 1; i <= n; i ++ ){cin >> v[i] >> w[i] >> s[i];}for (int i = 1; i <= n; i ++ ){for (int j = 0; j <= m; j ++ ){for (int k = 0; k <= s[i] && k * v[i] <= j; k ++ ){f[i][j] = max(f[i][j], f[i - 1][j - v[i] * k] + w[i] * k);}}}cout << f[n][m] << endl;return 0;
}

五、多重背包问题(二)

题目描述

有 NNN 种物品和一个容量是 VVV 的背包。
第 iii 种物品最多有 sis_isi​ 件,每件体积是 viv_ivi​,价值是 wiw_iwi​。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,NNN,VVV,用空格隔开,分别表示物品种数和背包容积。
接下来有 NNN 行,每行三个整数 vi,wi,siv_i,w_i,s_ivi​,wi​,si​,用空格隔开,分别表示第 iii 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0 0 0

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例

10

具体实现

1. 实现思路

  • 多重背包问题(二)与多重背包问题(一)的区别在于(二)的数据范围进行了扩大,如果直接暴力做法会导致超时,因此,需要进行优化。
  • 由于(一)当中的做法与 01 背包问题基本相同,所以,我们只需要对与 01 背包问题相同的那一段进行优化。
  • 这里引入二进制优化方法(用二进制表示十进制)。
  • 举例说明,如果我们要从 0 枚举到 1023,十进制的做法需要我们枚举 1023 次,如果采用二进制做法,我们需要将 1023 分成十组,分别是 1,2,4,8,16,32,64,128,256 和 512,我们在这十组数字当中,每组任意取出一个数字,组合起来就可以得到 0 到1023 当中的任何数字,此时,我们只需要枚举 10 次即可。

2. 实现代码

#include using namespace std;const int N = 12010, M = 2010;//n,m表示物品种数和背包容积
int n, m;
//v[N], w[N]表示每组物品的总体积和总价值
int v[N], w[N];
//f[M]表示价值
int f[M];int main()
{cin >> n >> m;//二进制枚举int cnt = 0;//将物品重新分组后的顺序for (int i = 1; i <= n; i ++ ){//a, b, s表示是每种物品的体积、价值和数量。int a, b, s;cin >> a >> b >> s;int k = 1; //二进制拆分,打包时每组中有 k 个同种物品while (k <= s) //最后一组的物品个数 < 2^(n+1)   1 2 4 8 16 ... 2^n 2^(n+1){cnt ++ ;v[cnt] = a * k;// 每组的体积w[cnt] = b * k;// 每组的价值s -= k; //得到剩余的物品数量k *= 2;// 注意是 k * 2,每次增长一倍,不是k * k}if (s > 0)// 二进制拆分完之后 剩下的物品个数分为新的一组{cnt ++ ;v[cnt] = a * s;w[cnt] = b * s;}}n = cnt; //将所得组数赋值给物品种数for (int i = 1; i <= n; i ++ ){for (int j = m; j >= v[i]; j -- ){f[j] = max(f[j], f[j - v[i]] + w[i]);}}cout << f[m] << endl;return 0;
}

六、分组背包问题

题目描述

有 NNN 组物品和一个容量是 VVV 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vijv_{ij}vij​,价值是 wijw_{ij}wij​,其中 iii 是组号,jjj 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行有两个整数 NNN,VVV,用空格隔开,分别表示物品组数和背包容量。
接下来有 NNN 组数据:

  • 每组数据第一行有一个整数 SiS_iSi​,表示第 iii 个物品组的物品数量;
  • 每组数据接下来有 SiS_iSi​ 行,每行有两个整数 vij,wijv_{ij},w_{ij}vij​,wij​,用空格隔开,分别表示第 iii 个物品组的第 jjj 个物品的体积和价值;

输出格式

输出一个整数,表示最大价值。

数据范围

0 0 0

输入样例

3 5
2
1 2
2 4
1
3 4
1
4 5

输出样例

8

具体实现

1. 实现思路

  • 分组背包问题是指我们有 NNN 组物品,每组物品当中有若干个物品,每个物品的体积和价值各有不同,每组物品当中最多只能选一个(可以不选)。

2. 实现代码

#include using namespace std;const int N = 110;//n,m表示物品组数和背包容积
int n, m;
//v[N][N], w[N][N], s[N]表示物品的体积,价值和数量
int v[N][N], w[N][N], s[N];
//f[N]表示总价值
int f[N];int main()
{cin >> n >> m;//每组物品的数据进行读入for (int i = 1; i <= n; i ++ ){cin >> s[i];for (int j = 1; j < s[i]; j ++ ){cin >> v[i][j] >> w[i][j];}}for (int i = 1; i <= n; i ++ ){for (int j = m; j >= 0; j -- ){for (int k = 0; k < s[i]; k ++ ){if (v[i][k] <= j){f[i][j] = max(f[i][j], f[i - 1][j - v[i][k]] + w[i][k]);}}}}cout << f[m] << endl;return 0;
}

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...