Acwing---122. 糖果传递
创始人
2024-05-24 07:35:12
0

糖果传递

  • 1.题目
  • 2.基本思想
  • 3.代码实现

1.题目

有 n 个小朋友坐成一圈,每人有 a[i]个糖果。

每人只能给左右两人传递糖果。

每人每次传递一个糖果代价为 1。

求使所有人获得均等糖果的最小代价。

输入格式
第一行输入一个正整数 n,表示小朋友的个数。

接下来 n 行,每行一个整数 a[i],表示第 i 个小朋友初始得到的糖果的颗数。

输出格式
输出一个整数,表示最小代价。

数据范围
1≤n≤10000001≤n≤10000001≤n≤1000000,
0≤a[i]≤2×1090≤a[i]≤2×10^90≤a[i]≤2×109,
数据保证一定有解。数据保证一定有解。数据保证一定有解。

输入样例:

4
1
2
5
4

输出样例:

4

2.基本思想

贪心

首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示。
假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量。 所以最后的答案就是ans=|X1| + |X2| + |X3| + ……+ |Xn|
对于第一个小朋友,他给了第n个小朋友X1颗糖果,还剩A1-X1颗糖果;但因为第2个小朋友给了他X2颗糖果,所以最后还剩A1-X1+X2颗糖果。根据题意,最后的糖果数量等于ave,即得到了一个方程:A1-X1+X2=ave。
同理,对于第2个小朋友,有A2-X2+X3=ave。最终,我们可以得到n个方程,一共有n个变量,但是因为从前n-1个方程可以推导出最后一个方程,所以实际上只有n-1个方程是有用的。
尽管无法直接解出答案,但可以用X1表示出其他的Xi,那么本题就变成了单变量的极值问题。
对于第1个小朋友,A1-X1+X2=ave -> X2=ave-A1+X1 = X1-C1(假设C1=A1-ave,下面类似)
对于第2个小朋友,A2-X2+X3=ave -> X3=ave-A2+X2=2ave-A1-A2+X1=X1-C2 即C2=A1+A2-2ave=A2+C1-ave以此类推
对于第3个小朋友,A3-X3+X4=ave -> X4=ave-A3+X3=3ave-A1-A2-A3+X1=X1-C3
我们的Ci的通式为Ci=Ai+C[i-1]-ave!!!
……
对于第n个小朋友,An-Xn+X1=ave。
我们希望Xi的绝对值之和尽量小,即|X1| + |X1-C1| + |X1-C2| + ……+ |X1-Cn-1|要尽量小。注意到|X1-Ci|的几何意义是数轴上的点X1到Ci的距离,所以问题变成了:给定数轴上的n个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数,证明略。

3.代码实现

import java.util.Arrays;
import java.util.Scanner;public class _122糖果传递 {static Scanner sc = new Scanner(System.in);static int N = 1000010;static int[] a = new int[N];static int[] c = new int[N];public static void main(String[] args) {int n = sc.nextInt();long aSum = 0;for (int i = 1; i <= n; i++) {a[i] = sc.nextInt();aSum += a[i];}int ave =(int) (aSum / n);c[1] = 0;//初始化for (int i = 2; i <= n; i++) c[i] = a[i] + c[i - 1] - ave;//记录 c数组//找到 c数组中间点Arrays.sort(c, 1, n + 1);int mid = c[(n + 1) / 2];//求和long sum = 0;for (int i = 1; i <= n; i++) sum += Math.abs(c[i] - mid);System.out.println(sum);}
}

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...