有 n 个小朋友坐成一圈,每人有 a[i]个糖果。
每人只能给左右两人传递糖果。
每人每次传递一个糖果代价为 1。
求使所有人获得均等糖果的最小代价。
输入格式
第一行输入一个正整数 n,表示小朋友的个数。
接下来 n 行,每行一个整数 a[i],表示第 i 个小朋友初始得到的糖果的颗数。
输出格式
输出一个整数,表示最小代价。
数据范围
1≤n≤10000001≤n≤10000001≤n≤1000000,
0≤a[i]≤2×1090≤a[i]≤2×10^90≤a[i]≤2×109,
数据保证一定有解。数据保证一定有解。数据保证一定有解。
输入样例:
4
1
2
5
4
输出样例:
4
贪心
首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示。
假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量。 所以最后的答案就是ans=|X1| + |X2| + |X3| + ……+ |Xn|
。
对于第一个小朋友,他给了第n个小朋友X1颗糖果,还剩A1-X1颗糖果;但因为第2个小朋友给了他X2颗糖果,所以最后还剩A1-X1+X2颗糖果。根据题意,最后的糖果数量等于ave,即得到了一个方程:A1-X1+X2=ave。
同理,对于第2个小朋友,有A2-X2+X3=ave。最终,我们可以得到n个方程,一共有n个变量,但是因为从前n-1个方程可以推导出最后一个方程,所以实际上只有n-1个方程是有用的。
尽管无法直接解出答案,但可以用X1表示出其他的Xi,那么本题就变成了单变量的极值问题。
对于第1个小朋友,A1-X1+X2=ave -> X2=ave-A1+X1 = X1-C1(假设C1=A1-ave,下面类似)
对于第2个小朋友,A2-X2+X3=ave -> X3=ave-A2+X2=2ave-A1-A2+X1=X1-C2 即C2=A1+A2-2ave=A2+C1-ave以此类推
对于第3个小朋友,A3-X3+X4=ave -> X4=ave-A3+X3=3ave-A1-A2-A3+X1=X1-C3
我们的Ci的通式为Ci=Ai+C[i-1]-ave
!!!
……
对于第n个小朋友,An-Xn+X1=ave。
我们希望Xi的绝对值之和尽量小,即|X1| + |X1-C1| + |X1-C2| + ……+ |X1-Cn-1|
要尽量小。注意到|X1-Ci|的几何意义是数轴上的点X1到Ci的距离,所以问题变成了:给定数轴上的n个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数,证明略。
import java.util.Arrays;
import java.util.Scanner;public class _122糖果传递 {static Scanner sc = new Scanner(System.in);static int N = 1000010;static int[] a = new int[N];static int[] c = new int[N];public static void main(String[] args) {int n = sc.nextInt();long aSum = 0;for (int i = 1; i <= n; i++) {a[i] = sc.nextInt();aSum += a[i];}int ave =(int) (aSum / n);c[1] = 0;//初始化for (int i = 2; i <= n; i++) c[i] = a[i] + c[i - 1] - ave;//记录 c数组//找到 c数组中间点Arrays.sort(c, 1, n + 1);int mid = c[(n + 1) / 2];//求和long sum = 0;for (int i = 1; i <= n; i++) sum += Math.abs(c[i] - mid);System.out.println(sum);}
}