RabbitMQ是基于Erlang语言开发的开源消息通信中间件,官网地址:https://www.rabbitmq.com/
安装RabbitMQ,这里使用Docker进行快速安装:
在线拉取
docker pull rabbitmq:3-management
执行下面的命令来运行MQ容器:
docker run
-e RABBITMQ_DEFAULT_USER=itcast
-e RABBITMQ_DEFAULT_PASS=123321
–name mq
–hostname mq1
-p 15672:15672
-p 5672:5672
-d
rabbitmq:3-management
RabbitMQ的结构和概念:
总结:
RabbitMQ中的几个概念:
MQ的官方文档中给出了5个MQ的Demo示例,对应了几种不同的用法:
基本消息队列(BasicQueue)
工作消息队列(WorkQueue)
发布订阅(Publish、Subscribe),又根据交换机类型不同分为三种:
官方的HelloWorld是基于最基础的消息队列模型来实现的,只包括三个角色:
publisher:消息发布者,将消息发送到队列queue
queue:消息队列,负责接受并缓存消息
consumer:订阅队列,处理队列中的消息
完成官方Demo中的hello world案例:
private final static String QUEUE_NAME = "simple.queue";/*** 需要com.rabbitmq:amqp-client:5.12.0* @throws IOException* @throws TimeoutException*/@Testpublic void testSendMessage() throws IOException, TimeoutException {ConnectionFactory factory = new ConnectionFactory();factory.setHost("xxxx");factory.setPort(5672);factory.setUsername("xxxx");factory.setPassword("xxxx");Connection connection = factory.newConnection();Channel channel = connection.createChannel();channel.queueDeclare(QUEUE_NAME, false, false, false, null);String message = "Hello World!";channel.basicPublish("", QUEUE_NAME, null, message.getBytes());System.out.println(" [x] Sent '" + message + "'");}
总结:
基本消息队列的消息发送流程:
基本消息队列的消息接收流程:
SpringAMQP是基于RabbitMQ封装的一套模板,并且还利用SpringBoot对其实现了自动装配,使用起来非常方便。
SpringAmqp的官方地址:https://spring.io/projects/spring-amqp
SpringAMQP提供了三个功能:
在父工程mq-demo中引入依赖
org.springframework.boot spring-boot-starter-amqp
首先配置MQ地址,在publisher服务的application.yml中添加配置:
spring:rabbitmq:host: 192.168.150.101 # 主机名port: 5672 # 端口virtual-host: / # 虚拟主机username: itcast # 用户名password: 123321 # 密码
然后在publisher服务中编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送:
package cn.itcast.mq.spring;import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringAmqpTest {@Autowiredprivate RabbitTemplate rabbitTemplate;@Testpublic void testSimpleQueue() {// 队列名称String queueName = "simple.queue";// 消息String message = "hello, spring amqp!";// 发送消息rabbitTemplate.convertAndSend(queueName, message);}
}
首先配置MQ地址,在consumer服务的application.yml中添加配置:
spring:rabbitmq:host: 192.168.150.101 # 主机名port: 5672 # 端口virtual-host: / # 虚拟主机username: itcast # 用户名password: 123321 # 密码
然后在consumer服务的cn.itcast.mq.listener
包中新建一个类SpringRabbitListener,代码如下:
package cn.itcast.mq.listener;import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;@Component
public class SpringRabbitListener {@RabbitListener(queues = "simple.queue")public void listenSimpleQueueMessage(String msg) throws InterruptedException {System.out.println("spring 消费者接收到消息:【" + msg + "】");}
}
启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息
Work queues,也被称为(Task queues),任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息。
当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。
此时就可以使用work 模型,多个消费者共同处理消息处理,速度就能大大提高了。
这次我们循环发送,模拟大量消息堆积现象。
在publisher服务中的SpringAmqpTest类中添加一个测试方法:
/*** workQueue* 向队列中不停发送消息,模拟消息堆积。*/
@Test
public void testWorkQueue() throws InterruptedException {// 队列名称String queueName = "simple.queue";// 消息String message = "hello, message_";for (int i = 0; i < 50; i++) {// 发送消息rabbitTemplate.convertAndSend(queueName, message + i);Thread.sleep(20);}
}
要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:
@RabbitListener(queues = "simple.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(20);
}@RabbitListener(queues = "simple.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(200);
}
注意到这个消费者sleep了1000秒,模拟任务耗时。
启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。
可以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。
也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。
在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:
spring:rabbitmq:listener:simple:prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息
Work模型的使用:
发布订阅的模型如图:
可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:
Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!
Fanout,英文翻译是扇出,我觉得在MQ中叫广播更合适。
在广播模式下,消息发送流程是这样的:
我们的计划是这样的:
Spring提供了一个接口Exchange,来表示所有不同类型的交换机:
在consumer中创建一个类,声明队列和交换机:
package cn.itcast.mq.config;import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.FanoutExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class FanoutConfig {/*** 声明交换机* @return Fanout类型交换机*/@Beanpublic FanoutExchange fanoutExchange(){return new FanoutExchange("itcast.fanout");}/*** 第1个队列*/@Beanpublic Queue fanoutQueue1(){return new Queue("fanout.queue1");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);}/*** 第2个队列*/@Beanpublic Queue fanoutQueue2(){return new Queue("fanout.queue2");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);}
}
在publisher服务的SpringAmqpTest类中添加测试方法:
@Test
public void testFanoutExchange() {// 队列名称String exchangeName = "itcast.fanout";// 消息String message = "hello, everyone!";rabbitTemplate.convertAndSend(exchangeName, "", message);
}
在consumer服务的SpringRabbitListener中添加两个方法,作为消费者:
@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg) {System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg) {System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}
交换机的作用是什么?
声明队列、交换机、绑定关系的Bean是什么?
在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。
在Direct模型下:
RoutingKey
(路由key)RoutingKey
。Routing Key
进行判断,只有队列的Routingkey
与消息的 Routing key
完全一致,才会接收到消息案例需求如下:
基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。
在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机:
@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue1"),exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){System.out.println("消费者接收到direct.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue2"),exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){System.out.println("消费者接收到direct.queue2的消息:【" + msg + "】");
}
在publisher服务的SpringAmqpTest类中添加测试方法:
@Test
public void testSendDirectExchange() {// 交换机名称String exchangeName = "itcast.direct";// 消息String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "red", message);
}
描述下Direct交换机与Fanout交换机的差异?
基于@RabbitListener注解声明队列和交换机有哪些常见注解?
Topic
类型的Exchange
与Direct
相比,都是可以根据RoutingKey
把消息路由到不同的队列。只不过Topic
类型Exchange
可以让队列在绑定Routing key
的时候使用通配符!
Routingkey
一般都是有一个或多个单词组成,多个单词之间以”.”分割,例如: item.insert
通配符规则:
#
:匹配一个或多个词
*
:匹配不多不少恰好1个词
举例:
item.#
:能够匹配item.spu.insert
或者 item.spu
item.*
:只能匹配item.spu
图示:
解释:
china.#
,因此凡是以 china.
开头的routing key
都会被匹配到。包括china.news和china.weather#.news
,因此凡是以 .news
结尾的 routing key
都会被匹配。包括china.news和japan.news案例需求:
实现思路如下:
在publisher服务的SpringAmqpTest类中添加测试方法:
/*** topicExchange*/
@Test
public void testSendTopicExchange() {// 交换机名称String exchangeName = "itcast.topic";// 消息String message = "喜报!孙悟空大战哥斯拉,胜!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
}
在consumer服务的SpringRabbitListener中添加方法:
@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue1"),exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC),key = "china.#"
))
public void listenTopicQueue1(String msg){System.out.println("消费者接收到topic.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue2"),exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC),key = "#.news"
))
public void listenTopicQueue2(String msg){System.out.println("消费者接收到topic.queue2的消息:【" + msg + "】");
}
描述下Direct交换机与Topic交换机的差异?
**.**
分割#
:代表0个或多个词*
:代表1个词之前说过,Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。
只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:
我们来测试一下。
我们修改消息发送的代码,发送一个Map对象:
@Test
public void testSendMap() throws InterruptedException {// 准备消息Map msg = new HashMap<>();msg.put("name", "Jack");msg.put("age", 21);// 发送消息rabbitTemplate.convertAndSend("simple.queue","", msg);
}
停止consumer服务
发送消息后查看控制台:
显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。
在publisher和consumer两个服务中都引入依赖:
com.fasterxml.jackson.dataformat jackson-dataformat-xml 2.9.10
配置消息转换器。
在启动类中添加一个Bean即可:
@Bean
public MessageConverter jsonMessageConverter(){return new Jackson2JsonMessageConverter();
}
上一篇:ThinkPHP数据库迁移工具