自动驾驶感知——物体检测与跟踪算法|4D毫米波雷达
创始人
2024-05-21 12:56:31
0

文章目录

  • 1. 物体检测与跟踪算法
    • 1.1 DBSCAN
    • 1.2 卡尔曼滤波
  • 2. 毫米波雷达公开数据库的未来发展方向
  • 3. 4D毫米波雷达特点及发展趋势
    • 3.1 4D毫米波雷达特点
      • 3.1.1 FMCW雷达角度分辨率
      • 3.1.2 MIMO ( Multiple Input Multiple Output)技术
    • 3.2 4D毫米波雷达发展趋势
      • 3.2.1 芯片级联
      • 3.2.2 专用芯片
      • 3.2.3 标准芯片+软件提升
  • 声明

1. 物体检测与跟踪算法

在这里插入图片描述

1.1 DBSCAN

DBSCAN: Density Based Spatial Clustering of Applications with Noise;
DBSCAN是基于密度的聚类方法,对样本分布的适应能力比K-Means更好。
在这里插入图片描述

红色的点是核心对象
黑色的点是非核心对象

注意:距离的度量不限于点的空间距离,还可以是其它点特征,比如速度、反射强度等
基本思路
假定类别可以通过样本分布的紧密程度决定,通过将紧密相连的样本分为一类,得到不同的聚类类别。

基本概念

  • (ε,MinPts)(\varepsilon ,MinPts)(ε,MinPts):用来描述邻域的密度;
  • ε\varepsilonε:描述了某一样本的邻域距离阈值;
  • MinPtsMinPtsMinPts:描述了邻域中的最小样本数。
  • 核心对象:对于任一样本,其邻域至少包含MinPts个样本。

算法流程

  1. 找到所有的核心对象
  2. 对于每一个未处理的核心对象,生成新的聚类;
  3. 搜索其ε\varepsilonε邻域,将ε\varepsilonε邻域中的点加入该聚类;
  4. 不断重复以上步骤

DBSCAN的详细讲解可以参考这篇博文DBSCAN详解
K-Means在这里插入图片描述
K-Means与DBSCAN 的对比

K-Means

  • 需要手工指定cluster的数量
  • 所有点都进行聚类,不会去除outlier
  • 各个方向同等重要,只适合于球形的cluster
  • 具有随机性,每次运行结果不一致

DBSCAN

  • 不需要指定cluster个数
  • 可以排除outlier
  • 对样本分布的适应性更好
  • 每次运行结果是一致的

1.2 卡尔曼滤波

本节只是对卡尔曼滤波的应用进行介绍,具体原理可见这篇博客——详解卡尔曼滤波原理以及https://www.kalmanfilter.net/
在这里插入图片描述
基本概念

以一维雷达测距为例,假设速度恒定,
系统状态xtx_txt​: ttt时刻飞机的航程;
测量值ztz_tzt​:雷达测距结果;
系统状态的估计值x⃗t,t{\vec x_{t,t}}xt,t​: ttt时 刻xxx的估计值(根据zzz估计) ;
系统状态的预测值x⃗t+1,t{\vec x_{t + 1,t}}xt+1,t​:t+1t+1t+1时刻xxx的预测值(根据速度预测)
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

雷达目标跟踪:多目标.
Tracking-by-Detection

  1. 由聚类算法在单帧点云得到目标输出;
  2. 提取目标的特征,包括统计特征(比如点位置的均值,方差等)和运动特征(比如速度和加速度等) ;
  3. 根据特征计算当前帧的检测目标(detections)与已跟踪的多个目标(tracks)的相似度;
  4. 按照相似度将de tections分配给tracks;
  5. 卡尔曼滤波更新tracks的状态参数(位置、速度等)。

2. 毫米波雷达公开数据库的未来发展方向

未来发展方向

  • 多模态数据
    ➢包括同步的图像,激光雷达等数据,用来进行多传感器融合的研究。

  • 多数据类型
    ➢包括ADC数据,RAD数据,点云数据等,为不同层次的算法研究和实际应用提供支持。

  • 360度视场
    ➢需要多个雷达配合完成,以满足多种自动驾驶应用的需求。8.01。

  • 大规模数据
    ➢一般来说,至少要有超过10万帧的不同场景,不同天气条件下采集的数据。

  • 丰富的标注信息
    ➢物体级:类别,位置,大小,方向,分割的mask
    ➢场景级:语义信息,比如free space, occupied space等。

3. 4D毫米波雷达特点及发展趋势

3.1 4D毫米波雷达特点

4D指的是距离(Range) ,水平角度(Azimuth) ,俯仰角度( Elevation)和速度(Doppler) 。一般来说, 4D 毫米波雷达的角度分辨率相对较高,因此也经常被称为4D成像雷达。

4D毫米波雷达的两个主要特点是:
1)可以测量高度的信息;
2)角度分辨率较高

为了更好的理解这两点,首先要了解FMCW雷达角度分辨率的依赖因素,以及为了增加角度分辨率所采用的MIMO机制。

3.1.1 FMCW雷达角度分辨率

想要测量目标的方位角,至少需要两个接收天线(RX).可以通过相位差来求得方位角θ=sin⁡−1(ωλ2πd)\theta = {\sin ^{ - 1}}(\frac{{\omega \lambda }}{{2\pi d}})θ=sin−1(2πdωλ​)
在这里插入图片描述
在有多个接收天线时,每个接收信号与前一个接收信号之间的相位差都是ω\omegaω。以下图为例,假设有4个接收天线,以第一个接收天线为基准,4个接收信号的相位差分别为0,ω\omegaω,2ω\omegaω,3ω\omegaω。这个序列信号的变化频率就是ω\omegaω,因此我们通过FFT来提取这个分量(也就是角度FFT)。
在这里插入图片描述
如果场景中存在多个目标,而且其距离和速度都相同,那么雷达能够区分这些目标的最小角度差称之为角度分辨率。假设有以下场景,场景中有两个目标,其方位角分别为θ\thetaθ和θ+Δθ\theta+\Delta\thetaθ+Δθ,对应的相位差分别为ω1\omega_1ω1​和ω2\omega_2ω2​。ω1=2πλdsin⁡(θ){\omega _1} = \frac{{2\pi }}{\lambda }d\sin (\theta )ω1​=λ2π​dsin(θ)ω2=2πλdsin⁡(θ+Δθ){\omega _2} = \frac{{2\pi }}{\lambda }d\sin (\theta + \Delta \theta )ω2​=λ2π​dsin(θ+Δθ)Δω=ω2−ω1=2πdλ(sin⁡(θ+Δθ)−sin⁡(θ))\Delta \omega = {\omega _2} - {\omega _1} = \frac{{2\pi d}}{\lambda }(\sin (\theta + \Delta \theta ) - \sin (\theta ))Δω=ω2​−ω1​=λ2πd​(sin(θ+Δθ)−sin(θ))因为sin⁡(θ)\sin(\theta)sin(θ)的导数为cos⁡(θ)\cos(\theta)cos(θ),所以可得Δω=2πdλ(cos⁡(θ)Δθ)\Delta \omega = \frac{{2\pi d}}{\lambda }(\cos (\theta )\Delta \theta )Δω=λ2πd​(cos(θ)Δθ)根据傅里叶变换理论,N点的FFT可以区分的频率分量最小为2π/N,这里的N就是接收天线的个数。这样我们就可以得到可以分辨的最小角度差,也就是角度分辨率。Δω>2πN\Delta \omega > \frac{{2\pi }}{N}Δω>N2π​⇒2πdλ(cos⁡(θ)Δθ)>2πN\Rightarrow \frac{{2\pi d}}{\lambda }(\cos (\theta )\Delta \theta ) > \frac{{2\pi }}{N}⇒λ2πd​(cos(θ)Δθ)>N2π​⇒Δθ>λNdcos⁡(θ)\Rightarrow \Delta \theta > \frac{\lambda }{{Nd\cos (\theta )}}⇒Δθ>Ndcos(θ)λ​通常来说,我们取d=λ/2,θ=0d = λ/2, θ = 0d=λ/2,θ=0 (boresight 方向,也就是雷达的中心朝向)。这时,角度分辨率公式为: θRES=2N{\theta _{RES}} = \frac{2}{N}θRES​=N2​

从上面的推导可以看出,角度分辨率主要依赖于两个因素: 1) 目标的方位角。在boresight方向分辨率最高。越靠近雷达FOV的边缘,角度分辨率越低。2)天线的个数。角度分辨率与天线个数城正比关系。第一个因素我们无法控制,而提高FMCW雷达角度分辨率的主要手段就是增加天线个数。

3.1.2 MIMO ( Multiple Input Multiple Output)技术

从角度分辨率的计算公式中可以看到,想要提高雷达的角度分辨率,必须增加接收天线的个数。但是,增加天线的个数,会使天线体积变得很大,此外每一个接收天线上都要附加一个单独的链路来处理信号,比如混频器、IF滤波器和ADC。不仅硬件设计变得复杂,而且成本也会增加。在这里插入图片描述在这里插入图片描述
采用MIMO (多发多收)的天线设计来降低接收天线的个数。比如,如果想要得到8个接收天线,采用2个发射天线和4个接收天线,这样就可以得到等效的8个虛拟接收天线阵列。一般来说,不同的发射天线会间隔发射,或者发射不同波形的信号,这样接收天线就可以区分来自不同发射天线的信号。

当发射天线有垂直方向的分布时,就可以测量目标的俯仰角度。下图就是一个典
型的3发4收的天线排列结构。等效的接收天线有12个,垂直方向上有两个天线
可以用来测量俯仰角度。
在这里插入图片描述

3.2 4D毫米波雷达发展趋势

3.2.1 芯片级联

4D成像雷达的核心在于较高的水平和垂直角度分辨率,这就需要增加发射和接收天线的个数。目前绝大多数毫米波雷达都是采用单片收发器,通常只有3发4收,也就是只有12个虛拟天线。一个增加虚拟天线的方案是基于现有的量产雷达,将多个雷达芯片进行级联,比如德国大陆的ARS540和华为的4D成像雷达。

ARS540采用4片级联的形式,将4片NXP的77GHz毫米波雷达收发器(MMIC)MR3003进行级联。每个MR3003是3发4收,4片联在一起就是12发16收,这样就可以产生192个虚拟天线。ARS540是第一个具备能够真正测量目标高度的毫米波雷达,其垂直角度分辨率可以达到2.3°,水平角度分辨率可以达到1.2°在这里插入图片描述

3.2.2 专用芯片

除了采用现有的量产雷达进行级联,还有的公司直接将多发多收的天线嵌入到一个雷达芯片里,比如Arbe, Vayyar 以及Mobileye。Arbe 提供的4D成像毫米波雷达Phoenix,采用48发48收,虚拟通道达到个2304个。Mobileye 同样也是48发48收的天线配置,水平和垂直角分辨率可以做到0.5°和2°。在这里插入图片描述

3.2.3 标准芯片+软件提升

这种方案基于标准的雷达芯片,但是采用软件和AI的方法来提高雷达的分辨率。这里比较有代表性的是傲酷的虚拟孔径成像技术。传统FMCW雷达重复单一的发射波形,相位差来自于多根实体接收天线,而傲酷虚拟孔径成像雷达波形可以对发射波进行调频,调相、调幅,也就是说每根接收天线在不同时间产生不同的相位,形成“虚拟天线孔径”。而且这种调整是可以根据当前环境进行自适应的,也就是说根据上一帧的检测结果来调整当前帧的波形。在这里插入图片描述

声明

本人所有文章仅作为自己的学习记录,若有侵权,联系立删。本系列文章主要参考了清华大学、北京理工大学、深蓝学院、百度Apollo等相关课程。

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...