基于蜣螂算法优化的核极限学习机(KELM)回归预测-附代码
创始人
2024-05-20 14:33:28
0

基于蜣螂算法优化的核极限学习机(KELM)回归预测

文章目录

  • 基于蜣螂算法优化的核极限学习机(KELM)回归预测
    • 1.KELM理论基础
    • 2.回归问题数据处理
    • 4.基于蜣螂算法优化的KELM
    • 5.测试结果
    • 6.Matlab代码

摘要:本文利用蜣螂算法对核极限学习机(KELM)进行优化,并用于回归预测.

1.KELM理论基础

核极限学习机(Kernel Based Extreme Learning Machine,KELM)是基于极限学习机(Extreme Learning Machine,ELM)并结合核函数所提出的改进算法,KELM 能够在保留 ELM 优点的基础上提高模型的预测性能。

ELM 是一种单隐含层前馈神经网络,其学习目标函数F(x) 可用矩阵表示为:
F(x)=h(x)×β=H×β=L(9)F(x)=h(x)\times \beta=H\times\beta=L \tag{9} F(x)=h(x)×β=H×β=L(9)
式中:xxx 为输入向量,h(x)h(x)h(x)、HHH 为隐层节点输出,βββ 为输出权重,LLL 为期望输出。

将网络训练变为线性系统求解的问题,β\betaβ根据 β=H∗⋅Lβ=H * ·Lβ=H∗⋅L 确定,其中,H∗H^*H∗ 为 HHH 的广义逆矩阵。为增强神经网络的稳定性,引入正则化系数 CCC 和单位矩阵 III,则输出权值的最小二乘解为
β=HT(HHT+Ic)−1L(10)\beta = H^T(HH^T+\frac{I}{c})^{-1}L\tag{10} β=HT(HHT+cI​)−1L(10)
引入核函数到 ELM 中,核矩阵为:
ΩELM=HHT=h(xi)h(xj)=K(xi,xj)(11)\Omega_{ELM}=HH^T=h(x_i)h(x_j)=K(x_i,x_j)\tag{11} ΩELM​=HHT=h(xi​)h(xj​)=K(xi​,xj​)(11)
式中:xix_ixi​ ,xjx_jxj​ 为试验输入向量,则可将式(9)表达为:
F(x)=[K(x,x1);...;K(x,xn)](IC+ΩELM)−1L(12)F(x)=[K(x,x_1);...;K(x,x_n)](\frac{I}{C}+\Omega_{ELM})^{-1}L \tag{12} F(x)=[K(x,x1​);...;K(x,xn​)](CI​+ΩELM​)−1L(12)
式中:(x1,x2,…,xn)(x_1 , x_2 , …, x_n )(x1​,x2​,…,xn​) 为给定训练样本,nnn 为样本数量.K()K()K()为核函数。

正则化系数 C 和核函数参数 S 需要人为设定,两者的设定将对 KELM的预测性能具有一定影响。

2.回归问题数据处理

采用随机法产生训练集和测试集,其中训练集包含 1 900 个样 本,测试集包含 100 个样本。为了减少变量差异较大对模型性能的影响,在建立模型之前先对数据进行归一化。选取核函数为rbf 高斯核函数,利用蜣螂算法对正则化系数 C 和核函数参数 S 选取进行优化。

4.基于蜣螂算法优化的KELM

蜣螂算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/128280084。

由前文可知,本文利用蜣螂算法对正则化系数 C 和核函数参数 S 进行优化。适应度函数设计为训练集的误差的MSE:
fitness=argmin(MSEpridect)fitness = argmin(MSE_{pridect}) fitness=argmin(MSEpridect​)

适应度函数选取训练后的MSE误差。MSE误差越小表明预测的数据与原始数据重合度越高。最终优化的输出为最佳正则化系数 C 和核函数参数 S。然后利用最佳正则化系数 C 和核函数参数 S训练后的网络对测试数据集进行测试。

5.测试结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

训练集DBO-KELM 的MSE:0.0050262
训练集KELM 的MSE:0.42921
测试集DBO-KELM 的MSE:0.0096058
测试集KELM 的MSE:0.5759

可以看出无论是在测试集和训练集上蜣螂优化的KELM结果均更优。

6.Matlab代码

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...