3小时精通opencv(五) 利用TrackBar进行颜色检测
创始人
2024-05-17 09:52:24
0

3小时精通opencv(五) 利用TrackBar进行颜色检测

参考视频资源:3h精通Opencv-Python

本章内容介绍如何利用TrackBar调节色域, 手动提取到我们需要的颜色

文章目录

  • 3小时精通opencv(五) 利用TrackBar进行颜色检测
    • 创建Trackbar
    • 色彩检测

创建Trackbar

在这里插入图片描述
opencv使用createTrackbar函数来创建TrackBar

滑动条(Trackbar)是一种可以动态调节参数的工具,它依附于窗口而存在。
createTrackbar() 这个函数用于创建一个可以调整数值的滑动条,并将滑动条附加到指定的窗口上。
函数功能:创建trackbar并添加到指定窗口

函数中各个参数的含义如下

  • trackbarName : 表示该trackbar的名称
  • windowName: 表示窗口名称,该trackbar将显示在这个窗口内
  • value: 表示创建trackbar的时候滑块的初始位置
  • count 表示滑块的最大值, (滑块的最小值默认为0) 滑块的取值范围为0~count
  • onChange 表示回调函数。当滑块位置有变化时,系统会调用该回调函数执行相关的操作

因为滑动条的窗口需要绑定窗口, 因此我们可以用namedWindowresizeWindow两个函数来创建窗口并且修改窗口的大小
这里我们还不需要使用到回调函数, 写个空的函数占位置就可以了

import cv2
import numpy as npdef empty(x):pass
path = 'Resources/lambo.png'
cv2.namedWindow("TrackBars")
cv2.resizeWindow("TrackBars", 640, 240)
cv2.createTrackbar("Test", "TrackBars", 0, 179, empty)

请添加图片描述

色彩检测

颜色检测需要我们将图片转到HSV格式. 通过调节Hue(色调), S(Saturation)饱和度, Value(名度) 来找到合适的色彩

因为要不断调节各个参数的值, 因此我们需要一个while循环来不断的展示参数变化所造成的影响, 使用到的函数会在下文具体介绍

import cv2
import numpy as npdef empty(a):passdef stackImages(scale, imgArray):rows = len(imgArray)cols = len(imgArray[0])rowsAvailable = isinstance(imgArray[0], list)width = imgArray[0][0].shape[1]height = imgArray[0][0].shape[0]if rowsAvailable:for x in range(0, rows):for y in range(0, cols):if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)else:imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),None, scale, scale)if len(imgArray[x][y].shape) == 2: imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)imageBlank = np.zeros((height, width, 3), np.uint8)hor = [imageBlank] * rowshor_con = [imageBlank] * rowsfor x in range(0, rows):hor[x] = np.hstack(imgArray[x])ver = np.vstack(hor)else:for x in range(0, rows):if imgArray[x].shape[:2] == imgArray[0].shape[:2]:imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)else:imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)hor = np.hstack(imgArray)ver = horreturn verpath = 'Resources/lambo.png'
cv2.namedWindow("TrackBars")
cv2.resizeWindow("TrackBars", 640, 240)
cv2.createTrackbar("Hue Min", "TrackBars", 0, 179, empty)
cv2.createTrackbar("Hue Max", "TrackBars", 0, 179, empty)
cv2.createTrackbar("Sat Min", "TrackBars", 0, 255, empty)
cv2.createTrackbar("Sat Max", "TrackBars", 0, 255, empty)
cv2.createTrackbar("Val Min", "TrackBars", 0, 255, empty)
cv2.createTrackbar("Val Max", "TrackBars", 0, 255, empty)while True:img = cv2.imread(path)imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)h_min = cv2.getTrackbarPos("Hue Min", "TrackBars")h_max = cv2.getTrackbarPos("Hue Max", "TrackBars")s_min = cv2.getTrackbarPos("Sat Min", "TrackBars")s_max = cv2.getTrackbarPos("Sat Max", "TrackBars")v_min = cv2.getTrackbarPos("Val Min", "TrackBars")v_max = cv2.getTrackbarPos("Val Max", "TrackBars")print(h_min, h_max, s_min, s_max, v_min, v_max)lower = np.array([h_min, s_min, v_min])upper = np.array([h_max, s_max, v_max])mask = cv2.inRange(imgHSV, lower, upper)imgResult = cv2.bitwise_and(img, img, mask=mask)# cv2.imshow("Original",img)# cv2.imshow("HSV",imgHSV)# cv2.imshow("Mask", mask)# cv2.imshow("Result", imgResult)imgStack = stackImages(0.6, ([img, imgHSV], [mask, imgResult]))cv2.imshow("Stacked Images", imgStack)cv2.waitKey(1)

cv2.inRange函数

def inRange(src, lowerb, upperb, dst=None):
  • src指的是原来的图像
  • lowerb 指的是图像中低于这个lower_red的值,图像值变为0
  • upperb指的是图像中高于这个lower_red的值,图像值变为0
  • 而在lowerbupperb之间的值变成255

cv2.bitwise_and函数可以实现按位与运算

def bitwise_and(src1, src2, dst=None, mask=None)
  • src1 输入图像
  • src2 输入图像
  • dst 输出图像
  • mask 图像掩膜,为8位单通道的灰度图像,用于指定要更改的输出图像数组的元素
  • dst(I)=src1(I)∧src2(I) if mask(I)≠0 也就是当mask [i]不等于零时才执行两个输入图像的And的操作, 这里因为两张输入图像相同, 经过mask(这里的mask在之前TrackBar调整参数后起到了过滤其他颜色的效果) 之后图像将保留出我们想要的颜色。

下面是调节参数的过程, 这里想要保留橙色
请添加图片描述
选取出合适的参数就可以调节到我们想要的色彩了
在这里插入图片描述

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
苏州离哪个飞机场近(苏州离哪个... 本篇文章极速百科小编给大家谈谈苏州离哪个飞机场近,以及苏州离哪个飞机场近点对应的知识点,希望对各位有...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
客厅放八骏马摆件可以吗(家里摆... 今天给各位分享客厅放八骏马摆件可以吗的知识,其中也会对家里摆八骏马摆件好吗进行解释,如果能碰巧解决你...