非极大值抑制,简称为NMS算法,英文为Non-Maximum Suppression。其思想是搜素局部最大值,抑制非极大值。NMS算法在不同应用中的具体实现不太一样,但思想是一样的。非极大值抑制,在计算机视觉任务中得到了广泛的应用,例如边缘检测、人脸检测、目标检测(DPM,YOLO,SSD,Faster R-CNN)等。
以目标检测为例:目标检测的过程中在同一目标的位置上会产生大量的候选框,这些候选框相互之间可能会有重叠,此时我们需要利用非极大值抑制找到最佳的目标边界框,消除冗余的边界框。Demo如下图:
前提:目标边界框列表及其对应的置信度得分列表,设定阈值,阈值用来删除重叠较大的边界框。
IoU:intersection-over-union,即两个边界框的交集部分除以它们的并集。
非极大值抑制的流程如下:
其实本质上的思想内涵是在一个区域当中找到置信度(confidence score)最高的那个边界框,搜索这个区域中的局部最大值,抑制非极大值。
#!/usr/bin/env python
# _*_ coding: utf-8 _*_import cv2
import numpy as np"""Non-max Suppression Algorithm@param list Object candidate bounding boxes@param list Confidence score of bounding boxes@param float IoU threshold@return Rest boxes after nms operation
"""
def nms(bounding_boxes, confidence_score, threshold):# If no bounding boxes, return empty listif len(bounding_boxes) == 0:return [], []# Bounding boxesboxes = np.array(bounding_boxes)# coordinates of bounding boxesstart_x = boxes[:, 0]start_y = boxes[:, 1]end_x = boxes[:, 2]end_y = boxes[:, 3]# Confidence scores of bounding boxesscore = np.array(confidence_score)# Picked bounding boxespicked_boxes = []picked_score = []# Compute areas of bounding boxesareas = (end_x - start_x + 1) * (end_y - start_y + 1)# Sort by confidence score of bounding boxesorder = np.argsort(score)# Iterate bounding boxeswhile order.size > 0:# The index of largest confidence scoreindex = order[-1]# Pick the bounding box with largest confidence scorepicked_boxes.append(bounding_boxes[index])picked_score.append(confidence_score[index])# Compute ordinates of intersection-over-union(IOU)x1 = np.maximum(start_x[index], start_x[order[:-1]])x2 = np.minimum(end_x[index], end_x[order[:-1]])y1 = np.maximum(start_y[index], start_y[order[:-1]])y2 = np.minimum(end_y[index], end_y[order[:-1]])# Compute areas of intersection-over-unionw = np.maximum(0.0, x2 - x1 + 1)h = np.maximum(0.0, y2 - y1 + 1)intersection = w * h# Compute the ratio between intersection and unionratio = intersection / (areas[index] + areas[order[:-1]] - intersection)left = np.where(ratio < threshold)order = order[left]return picked_boxes, picked_score# Image name
image_name = 'nms.jpg'# Bounding boxes
bounding_boxes = [(187, 82, 337, 317), (150, 67, 305, 282), (246, 121, 368, 304)]
confidence_score = [0.9, 0.75, 0.8]# Read image
image = cv2.imread(image_name)# Copy image as original
org = image.copy()# Draw parameters
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
thickness = 2# IoU threshold
threshold = 0.4# Draw bounding boxes and confidence score
for (start_x, start_y, end_x, end_y), confidence in zip(bounding_boxes, confidence_score):(w, h), baseline = cv2.getTextSize(str(confidence), font, font_scale, thickness)cv2.rectangle(org, (start_x, start_y - (2 * baseline + 5)), (start_x + w, start_y), (0, 255, 255), -1)cv2.rectangle(org, (start_x, start_y), (end_x, end_y), (0, 255, 255), 2)cv2.putText(org, str(confidence), (start_x, start_y), font, font_scale, (0, 0, 0), thickness)# Run non-max suppression algorithm
picked_boxes, picked_score = nms(bounding_boxes, confidence_score, threshold)# Draw bounding boxes and confidence score after non-maximum supression
for (start_x, start_y, end_x, end_y), confidence in zip(picked_boxes, picked_score):(w, h), baseline = cv2.getTextSize(str(confidence), font, font_scale, thickness)cv2.rectangle(image, (start_x, start_y - (2 * baseline + 5)), (start_x + w, start_y), (0, 255, 255), -1)cv2.rectangle(image, (start_x, start_y), (end_x, end_y), (0, 255, 255), 2)cv2.putText(image, str(confidence), (start_x, start_y), font, font_scale, (0, 0, 0), thickness)# Show image
cv2.imshow('Original', org)
cv2.imshow('NMS', image)
cv2.waitKey(0)
这是一个链接 非极大值抑制(Non-Maximum Suppression),很能给人启发。