import argparse
import time
from pathlib import Pathimport os
import copy
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import randomfrom models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
from utils.plots import colors, plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronizeddef detect(opt):source, weights, view_img, save_txt, imgsz, save_txt_tidl, kpt_label ,widerface,save_widerface= opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.save_txt_tidl, opt.kpt_label,opt.widerface,opt.save_widerfacesave_img = not opt.nosave and not source.endswith('.txt') # save inference imageswebcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))# Directoriessave_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run(save_dir / 'labels' if (save_txt or save_txt_tidl) else save_dir).mkdir(parents=True, exist_ok=True) # make dir# Initializeset_logging()device = select_device(opt.device)half = device.type != 'cpu' and not save_txt_tidl # half precision only supported on CUDA# Load modelmodel = attempt_load(weights, map_location=device) # load FP32 modelstride = int(model.stride.max()) # model strideif isinstance(imgsz, (list,tuple)):assert len(imgsz) ==2; "height and width of image has to be specified"imgsz[0] = check_img_size(imgsz[0], s=stride)imgsz[1] = check_img_size(imgsz[1], s=stride)else:imgsz = check_img_size(imgsz, s=stride) # check img_sizenames = model.module.names if hasattr(model, 'module') else model.names # get class namesif half:model.half() # to FP16# Second-stage classifierclassify = Falseif classify:modelc = load_classifier(name='resnet101', n=2) # initializemodelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()# Set Dataloadervid_path, vid_writer = None, Noneif webcam:view_img = check_imshow()cudnn.benchmark = True # set True to speed up constant image size inferencedataset = LoadStreams(source, img_size=imgsz, stride=stride)else:dataset = LoadImages(source, img_size=imgsz, stride=stride)# Run inferenceif device.type != 'cpu':model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run oncet0 = time.time()for path, img, im0s, vid_cap in dataset:img = torch.from_numpy(img).to(device)img = img.half() if half else img.float() # uint8 to fp16/32img /= 255.0 # 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)# Inferencet1 = time_synchronized()pred = model(img, augment=opt.augment)[0]print(pred[...,4].max())# Apply NMSpred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms, kpt_label=kpt_label)t2 = time_synchronized()# Apply Classifierif classify:pred = apply_classifier(pred, modelc, img, im0s)# Process detectionsfor i, det in enumerate(pred): # detections per imageif webcam: # batch_size >= 1p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.countelse:p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)p = Path(p) # to Pathsave_path = str(save_dir / p.name) # img.jpgtxt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txts += '%gx%g ' % img.shape[2:] # print stringgn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh# print("det----",det)# print("det.Size()---",det.shape[0])# exit(-1)if det.shape[0] == 0:# print("det is None:====",det)# exit(-1)os.makedirs(save_widerface,exist_ok=True)save_widerface_txt = str(Path(save_widerface)/Path(Path(p).name[:-3]+"txt"))with open(save_widerface_txt,"w") as fwider:widerface_file_name = Path(p).name[:-4] + "\n"print("=========",widerface_file_name)# exit(-1)fwider.write(widerface_file_name)fwider.write(str(0)+"\n")if len(det):# Rescale boxes from img_size to im0 sizescale_coords(img.shape[2:], det[:, :4], im0.shape, kpt_label=False)scale_coords(img.shape[2:], det[:, 6:], im0.shape, kpt_label=kpt_label, step=3)# Print resultsfor c in det[:, 5].unique():n = (det[:, 5] == c).sum() # detections per classs += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to stringif widerface:os.makedirs(save_widerface,exist_ok=True)save_widerface_txt = str(Path(save_widerface)/Path(Path(p).name[:-3]+"txt"))widerface_file_name = Path(p).name[:-4] + "\n"widerface_bboxs_num = str(len(pred[0])) +"\n"with open(save_widerface_txt,"a") as fwider:fwider.write(widerface_file_name)fwider.write(widerface_bboxs_num)# Write resultsfor det_index, (*xyxy, conf, cls) in enumerate((det[:,:6])):if widerface:if cls == 0:os.makedirs(save_widerface,exist_ok=True)save_widerface_txt = str(Path(save_widerface)/Path(Path(p).name[:-3]+"txt"))#widerface_file_name = Path(p).name + "\n"#widerface_bboxs_num = str(len(pred[0])) +"\n"x1 = int(xyxy[0]+0.5)y1 = int(xyxy[1]+0.5)x2 = int(xyxy[2]+0.5)y2 = int(xyxy[3]+0.5)with open(save_widerface_txt,"a") as fwider:#fwider.write(widerface_file_name)#fwider.write(widerface_bboxs_num)fwider.write("%d %d %d %d %.03f"%(x1,y1,x2-x1,y2-y1,conf if conf<=1 else 1)+"\n")if save_txt: # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywhline = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label formatwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')# if save_img or opt.save_crop or view_img: # Add bbox to image# c = int(cls) # integer class# label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')# kpts = det[det_index, 6:]# plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness, kpt_label=kpt_label, kpts=kpts, steps=3, orig_shape=im0.shape[:2])# if opt.save_crop:# save_one_box(xyxy, im0s, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)if save_txt_tidl: # Write to file in tidl dump formatfor *xyxy, conf, cls in det_tidl:xyxy = torch.tensor(xyxy).view(-1).tolist()line = (conf, cls, *xyxy) if opt.save_conf else (cls, *xyxy) # label formatwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')# Print time (inference + NMS)print(f'{s}Done. ({t2 - t1:.3f}s)')# Stream resultsif view_img:cv2.imshow(str(p), im0)cv2.waitKey(1) # 1 millisecond# Save results (image with detections)if save_img:if dataset.mode == 'image':cv2.imwrite(save_path, im0)else: # 'video' or 'stream'if vid_path != save_path: # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release() # release previous video writerif vid_cap: # videofps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))else: # streamfps, w, h = 30, im0.shape[1], im0.shape[0]save_path += '.mp4'vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))vid_writer.write(im0)if save_txt or save_txt_tidl or save_img:s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt or save_txt_tidl else ''print(f"Results saved to {save_dir}{s}")print(f'Done. ({time.time() - t0:.3f}s)')if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcamparser.add_argument('--img-size', nargs= '+', type=int, default=640, help='inference size (pixels)')parser.add_argument('--conf-thres', type=float, default=0.01, help='object confidence threshold')parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--view-img', action='store_true', help='display results')parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')parser.add_argument('--save-txt-tidl', action='store_true', help='save results to *.txt in tidl format')parser.add_argument('--save-bin', action='store_true', help='save base n/w outputs in raw bin format')parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')parser.add_argument('--nosave', action='store_true', help='do not save images/videos')parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')parser.add_argument('--augment', action='store_true', help='augmented inference')parser.add_argument('--update', action='store_true', help='update all models')parser.add_argument('--project', default='runs/detect', help='save results to project/name')parser.add_argument('--name', default='exp', help='save results to project/name')parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')parser.add_argument('--kpt-label', type=int, default=5, help='number of keypoints')parser.add_argument("--widerface",action="store_true",help='save widerface_val txt')parser.add_argument('--save-widerface', type=str, default='./widerface_txt', help=' save widerface_txt folder') opt = parser.parse_args()print(opt)check_requirements(exclude=('tensorboard', 'pycocotools', 'thop'))with torch.no_grad():if opt.update: # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:detect(opt=opt)strip_optimizer(opt.weights)else:detect(opt=opt)
执行命令
CUDA_VISIBLE_DEVICES=0 python detect-widerface.py --weights your path --source your input_path --widerface --save-widerface 2023-widerface-1600
3.最后一步就是将生成的txt文件移到指定的目录下,代码如下
import os
import os.path as osp
import re
import shutil
from pathlib import Pathif __name__ == "__main__":#用于评测的txt文件夹path = "./yolov7s_txt-pre-weight"#detect生成的txt文件source_path = "./2023-widerface-1600"dir_list = ["0--Parade","1--Handshaking","2--Demonstration","3--Riot","4--Dancing","5--Car_Accident","6--Funeral","7--Cheering","8--Election_Campain","9--Press_Conference","10--People_Marching","11--Meeting","12--Group","13--Interview","14--Traffic","15--Stock_Market","16--Award_Ceremony","17--Ceremony","18--Concerts","19--Couple","20--Family_Group","21--Festival","22--Picnic","23--Shoppers","24--Soldier_Firing","25--Soldier_Patrol","26--Soldier_Drilling","27--Spa","28--Sports_Fan","29--Students_Schoolkids","30--Surgeons","31--Waiter_Waitress","32--Worker_Laborer","33--Running","34--Baseball","35--Basketball","36--Football","37--Soccer","38--Tennis","39--Ice_Skating","40--Gymnastics","41--Swimming","42--Car_Racing","43--Row_Boat","44--Aerobics","45--Balloonist","46--Jockey","47--Matador_Bullfighter","48--Parachutist_Paratrooper","49--Greeting","50--Celebration_Or_Party","51--Dresses","52--Photographers","53--Raid","54--Rescue","55--Sports_Coach_Trainer","56--Voter","57--Angler","58--Hockey","59--people--driving--car","61--Street_Battle"]for dir_path in dir_list:obj_path = osp.join(path,dir_path)os.makedirs(obj_path,exist_ok=True)# num = 0# print("source_path===",source_path)for file_path in os.listdir(source_path):file_id_compile = re.compile(r"([\d]+)_")file_id = re.findall(file_id_compile,file_path)[0]file_paths = osp.join(source_path,file_path)dir_id_compile = re.compile(r"([\d]+)--")for path_dir in dir_list:dir_id = re.findall(dir_id_compile,path_dir)[0]# print("dir_id:%s"%(dir_id))if file_id == dir_id:# print("file_id===%s,dir_id===%s"%(file_id,dir_id))shutil.copyfile(file_paths,Path(Path(path)/path_dir)/file_path)break