如果Plotlygo.Boxplotly.graph_objects Express 没有提供一个好的起点,也可以使用. go.Box参考页面https://plotly.com/python/reference/box/中描述了所有可用选项。
import plotly.graph_objects as go
import numpy as np
np.random.seed(1)y0 = np.random.randn(50) - 1
y1 = np.random.randn(50) + 1fig = go.Figure()
fig.add_trace(go.Box(y=y0))
fig.add_trace(go.Box(y=y1))fig.show()
import plotly.graph_objects as go
import numpy as npx0 = np.random.randn(50)
x1 = np.random.randn(50) + 2 # shift meanfig = go.Figure()
# 对于水平打印,使用x而不是y参数
fig.add_trace(go.Box(x=x0))
fig.add_trace(go.Box(x=x1))fig.show()
import plotly.graph_objects as gofig = go.Figure(data=[go.Box(y=[0, 1, 1, 2, 3, 5, 8, 13, 21],boxpoints='all', # 也可以是异常值、可疑的异常值或错误jitter=0.3, # 添加一些抖动以更好地分离点pointpos=-1.8 # 点的相对位置wrt框)])fig.show()
有关每种算法如何工作的说明,请参阅选择计算四分位数的算法。
import plotly.graph_objects as godata = [1, 2, 3, 4, 5, 6, 7, 8, 9]fig = go.Figure()
fig.add_trace(go.Box(y=data, quartilemethod="linear", name="Linear Quartile Mode"))
fig.add_trace(go.Box(y=data, quartilemethod="inclusive", name="Inclusive Quartile Mode"))
fig.add_trace(go.Box(y=data, quartilemethod="exclusive", name="Exclusive Quartile Mode"))
fig.update_traces(boxpoints='all', jitter=0)
fig.show()
您可以指定预先计算的四分位数属性,而不是使用内置的四分位数计算算法。
如果您已经预先计算了这些值,或者您需要使用与提供的算法不同的算法,这可能会很有用。
import plotly.graph_objects as gofig = go.Figure()fig.add_trace(go.Box(y=[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ],[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ],[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]], name="Precompiled Quartiles"))fig.update_traces(q1=[ 1, 2, 3 ], median=[ 4, 5, 6 ],q3=[ 7, 8, 9 ], lowerfence=[-1, 0, 1],upperfence=[5, 6, 7], mean=[ 2.2, 2.8, 3.2 ],sd=[ 0.2, 0.4, 0.6 ], notchspan=[ 0.2, 0.4, 0.6 ] )fig.show()
import plotly.graph_objects as go
import numpy as npy0 = np.random.randn(50)
y1 = np.random.randn(50) + 1 # shift meanfig = go.Figure()
fig.add_trace(go.Box(y=y0, name='Sample A',marker_color = 'indianred'))
fig.add_trace(go.Box(y=y1, name = 'Sample B',marker_color = 'lightseagreen'))fig.show()
import plotly.graph_objects as gofig = go.Figure()
fig.add_trace(go.Box(y=[2.37, 2.16, 4.82, 1.73, 1.04, 0.23, 1.32, 2.91, 0.11, 4.51, 0.51, 3.75, 1.35, 2.98, 4.50, 0.18, 4.66, 1.30, 2.06, 1.19],name='Only Mean',marker_color='darkblue',boxmean=True # 代表平均值
))
fig.add_trace(go.Box(y=[2.37, 2.16, 4.82, 1.73, 1.04, 0.23, 1.32, 2.91, 0.11, 4.51, 0.51, 3.75, 1.35, 2.98, 4.50, 0.18, 4.66, 1.30, 2.06, 1.19],name='Mean & SD',marker_color='royalblue',boxmean='sd' # 代表平均值和标准差
))fig.show()
下面的示例显示了如何使用该boxpoints参数。如果是“异常值”,则仅显示位于晶须之外的样本点。如果是“可疑异常值”,则会显示异常点,并且突出显示小于 4Q1-3Q3 或大于 4Q3-3Q1 的点(使用outliercolor)。如果“全部”,则显示所有样本点。如果为 False,则仅显示没有样本点的框。
import plotly.graph_objects as gofig = go.Figure()
fig.add_trace(go.Box(y=[0.75, 5.25, 5.5, 6, 6.2, 6.6, 6.80, 7.0, 7.2, 7.5, 7.5, 7.75, 8.15,8.15, 8.65, 8.93, 9.2, 9.5, 10, 10.25, 11.5, 12, 16, 20.90, 22.3, 23.25],name="All Points",jitter=0.3,pointpos=-1.8,boxpoints='all', # 代表所有点marker_color='rgb(7,40,89)',line_color='rgb(7,40,89)'
))fig.add_trace(go.Box(y=[0.75, 5.25, 5.5, 6, 6.2, 6.6, 6.80, 7.0, 7.2, 7.5, 7.5, 7.75, 8.15,8.15, 8.65, 8.93, 9.2, 9.5, 10, 10.25, 11.5, 12, 16, 20.90, 22.3, 23.25],name="Only Whiskers",boxpoints=False, # 没有数据点marker_color='rgb(9,56,125)',line_color='rgb(9,56,125)'
))fig.add_trace(go.Box(y=[0.75, 5.25, 5.5, 6, 6.2, 6.6, 6.80, 7.0, 7.2, 7.5, 7.5, 7.75, 8.15,8.15, 8.65, 8.93, 9.2, 9.5, 10, 10.25, 11.5, 12, 16, 20.90, 22.3, 23.25],name="Suspected Outliers",boxpoints='suspectedoutliers', # 只有可疑的异常值marker=dict(color='rgb(8,81,156)',outliercolor='rgba(219, 64, 82, 0.6)',line=dict(outliercolor='rgba(219, 64, 82, 0.6)',outlierwidth=2)),line_color='rgb(8,81,156)'
))fig.add_trace(go.Box(y=[0.75, 5.25, 5.5, 6, 6.2, 6.6, 6.80, 7.0, 7.2, 7.5, 7.5, 7.75, 8.15,8.15, 8.65, 8.93, 9.2, 9.5, 10, 10.25, 11.5, 12, 16, 20.90, 22.3, 23.25],name="Whiskers and Outliers",boxpoints='outliers', # 只有异常值marker_color='rgb(107,174,214)',line_color='rgb(107,174,214)'
))fig.update_layout(title_text="盒形图样式异常值")
fig.show()
import plotly.graph_objects as gox = ['day 1', 'day 1', 'day 1', 'day 1', 'day 1', 'day 1','day 2', 'day 2', 'day 2', 'day 2', 'day 2', 'day 2']fig = go.Figure()fig.add_trace(go.Box(y=[0.2, 0.2, 0.6, 1.0, 0.5, 0.4, 0.2, 0.7, 0.9, 0.1, 0.5, 0.3],x=x,name='kale',marker_color='#3D9970'
))
fig.add_trace(go.Box(y=[0.6, 0.7, 0.3, 0.6, 0.0, 0.5, 0.7, 0.9, 0.5, 0.8, 0.7, 0.2],x=x,name='radishes',marker_color='#FF4136'
))
fig.add_trace(go.Box(y=[0.1, 0.3, 0.1, 0.9, 0.6, 0.6, 0.9, 1.0, 0.3, 0.6, 0.8, 0.5],x=x,name='carrots',marker_color='#FF851B'
))fig.update_layout(yaxis_title='标准化湿度',boxmode='group' # 将x的每个值的不同轨迹框组合在一起
)
fig.show()
import plotly.graph_objects as goy = ['day 1', 'day 1', 'day 1', 'day 1', 'day 1', 'day 1','day 2', 'day 2', 'day 2', 'day 2', 'day 2', 'day 2']fig = go.Figure()
fig.add_trace(go.Box(x=[0.2, 0.2, 0.6, 1.0, 0.5, 0.4, 0.2, 0.7, 0.9, 0.1, 0.5, 0.3],y=y,name='kale',marker_color='#3D9970'
))
fig.add_trace(go.Box(x=[0.6, 0.7, 0.3, 0.6, 0.0, 0.5, 0.7, 0.9, 0.5, 0.8, 0.7, 0.2],y=y,name='radishes',marker_color='#FF4136'
))
fig.add_trace(go.Box(x=[0.1, 0.3, 0.1, 0.9, 0.6, 0.6, 0.9, 1.0, 0.3, 0.6, 0.8, 0.5],y=y,name='carrots',marker_color='#FF851B'
))fig.update_layout(xaxis=dict(title='标准化湿度', zeroline=False),boxmode='group'
)fig.update_traces(orientation='h') # 水平方框图
fig.show()
import plotly.graph_objects as go
import numpy as npN = 30 # 盒子的数量# 通过固定HSL的饱和度和亮度,生成一系列彩虹颜色
# 色彩的表现和围绕色调前进。
# Plotly接受任何CSS颜色格式, see e.g. http://www.w3schools.com/cssref/css_colors_legal.asp.
c = ['hsl('+str(h)+',50%'+',50%)' for h in np.linspace(0, 360, N)]# 每个方框由一个包含数据、类型和颜色的dict表示。
# 使用列表理解来描述N个框,每个框都有不同的颜色和不同的随机生成的数据:
fig = go.Figure(data=[go.Box(y=3.5 * np.sin(np.pi * i/N) + i/N + (1.5 + 0.5 * np.cos(np.pi*i/N)) * np.random.rand(10),marker_color=c[i]) for i in range(int(N))])# 格式化布局
fig.update_layout(xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),yaxis=dict(zeroline=False, gridcolor='white'),paper_bgcolor='rgb(233,233,233)',plot_bgcolor='rgb(233,233,233)',
)fig.show()
import plotly.graph_objects as go
import numpy as npx_data = ['Carmelo Anthony', 'Dwyane Wade','Deron Williams', 'Brook Lopez','Damian Lillard', 'David West',]N = 50y0 = (10 * np.random.randn(N) + 30).astype('int32')
y1 = (13 * np.random.randn(N) + 38).astype('int32')
y2 = (11 * np.random.randn(N) + 33).astype('int32')
y3 = (9 * np.random.randn(N) + 36).astype('int32')
y4 = (15 * np.random.randn(N) + 31).astype('int32')
y5 = (12 * np.random.randn(N) + 40).astype('int32')y_data = [y0, y1, y2, y3, y4, y5]colors = ['rgba(93, 164, 214, 0.5)', 'rgba(255, 144, 14, 0.5)', 'rgba(44, 160, 101, 0.5)','rgba(255, 65, 54, 0.5)', 'rgba(207, 114, 255, 0.5)', 'rgba(127, 96, 0, 0.5)']fig = go.Figure()for xd, yd, cls in zip(x_data, y_data, colors):fig.add_trace(go.Box(y=yd,name=xd,boxpoints='all',jitter=0.5,whiskerwidth=0.2,fillcolor=cls,marker_size=2,line_width=1))fig.update_layout(title='2012年NBA得分前9名球员的得分',yaxis=dict(autorange=True,showgrid=True,zeroline=True,dtick=5,gridcolor='rgb(255, 255, 255)',gridwidth=1,zerolinecolor='rgb(255, 255, 255)',zerolinewidth=2,),margin=dict(l=40,r=30,b=80,t=100,),paper_bgcolor='rgb(243, 243, 243)',plot_bgcolor='rgb(243, 243, 243)',showlegend=False
)fig.show()
条形图就像一个显示点的箱形图,没有方框:
import plotly.express as px
df = px.data.tips()
print(df)
'''total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
.. ... ... ... ... ... ... ...
239 29.03 5.92 Male No Sat Dinner 3
240 27.18 2.00 Female Yes Sat Dinner 2
241 22.67 2.00 Male Yes Sat Dinner 2
242 17.82 1.75 Male No Sat Dinner 2
243 18.78 3.00 Female No Thur Dinner 2[244 rows x 7 columns]
'''
fig = px.strip(df, x='day', y='tip')
fig.show()
Dash是一个用于构建分析应用程序的开源框架,不需要 Javascript,它与 Plotly 图形库紧密集成。
在https://dash.plot.ly/installation了解如何安装 Dash 。
在您看到的这个页面的任何地方fig.show(),您都可以在 Dash 应用程序中显示相同的图形,方法是将其从内置包中传递给组件figure的参数,如下所示:Graphdash_core_components
import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )import dash
import dash_core_components as dcc
import dash_html_components as htmlapp = dash.Dash()
app.layout = html.Div([dcc.Graph(figure=fig)
])app.run_server(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter