【深度学习】实验4答案:脑部 MRI 图像分割
创始人
2024-01-29 06:20:36
0

DL_class

学堂在线《深度学习》实验课代码+报告(其中实验1和实验6有配套PPT),授课老师为胡晓林老师。课程链接:https://www.xuetangx.com/training/DP080910033751/619488?channel=i.area.manual_search。

持续更新中。
所有代码为作者所写,并非最后的“标准答案”,只有实验6被扣了1分,其余皆是满分。仓库链接:https://github.com/W-caner/DL_classs。 此外,欢迎关注我的CSDN:https://blog.csdn.net/Can__er?type=blog。
部分数据集由于过大无法上传,我会在博客中给出下载链接。如果对代码有疑问,有更好的思路等,也非常欢迎在评论区与我交流~

实验4:脑部 MRI 图像分割

跑通程序

使用原始程序简单训练了15个周期,绘制loss曲线和Dsc,然后进行预测,dice coefficient约为0.9,如下图所示:
请添加图片描述

请添加图片描述

请添加图片描述

效果提升

网络结构

我没有做出大的改变,在阅读文献的时候看到了一个UNet++,但没有实现成功。

损失函数

这里尝试了2种额外的损失函数:

  • 第一个是增加了权重的交叉熵损失函数FocalLoss,为了解决“正负样本”或者“优劣样本”不均衡问题。代码为:

    class FocalLoss(nn.Module):def __init__(self, weight=None, reduction='mean', gamma=0.25, eps=1e-7):super(FocalLoss, self).__init__()self.gamma = gammaself.eps = epsself.ce = nn.CrossEntropyLoss(weight=weight, reduction=reduction)def forward(self, y_pred, y_true):logp = self.ce(y_pred, torch.squeeze(y_true).long())p = torch.exp(-logp)loss = (1 - p) ** self.gamma * logpreturn torch.Tensor(loss.mean())
    

    下图为比较结果,可以发现交叉熵在此处并没有比较好的表现,无论是收敛速度还是训练了15个周期的最终结果,所以舍弃。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XJ8wFC1z-1668653063845)(.\image-20220714194301321.png)]

  • 第二个是改进后的DiceLoss,参照了图像分割模型调优技巧,loss函数大盘点 - 知乎 (zhihu.com)一文中提出的损失函数。Dice系数是一种用于评估分割输出的度量标准。它也已修改为损失函数,因为它可以实现分割目标的数学表示。但是由于其非凸性,它多次都无法获得最佳结果。Lovsz-softmax损失旨在通过添加使用Lovsz扩展的平滑来解决非凸损失函数的问题。同时,Log-Cosh方法已广泛用于基于回归的问题中,以平滑曲线。作者将损失函数的公式改为请添加图片描述,其中用到的函数示意图如下。
    请添加图片描述

下图是对比未经过改进的损失函数和改进后的Loss与Dsc,可以发现Loss因为计算公式不同而存在差异,但改进和的Dsc有着较好的表现。最终也选择其作为损失函数。

请添加图片描述

优化器

分别采用不含动量的优化器SGD,含动量(0.9)的优化器SGD,设置学习率为0.01至0.001,得到Loss结果如下,可以发现含动量的SGD比不含动量SGD有着更好表现,而adam有着最好的表现。这里我的标签打错了,lr的值应该是0.01和0.001。

请添加图片描述

最终效果

最后采用网络结构没有改变,损失函数为改进后的DiceLoss,学习率从0.01开始,每周期进行0.9的衰减,训练30个周期,得到的平均DSC为0.92。

此时应用该训练参数于训练集,发现6668出现了异常现象,但是平均效果得到了一点提高,还有明显的可优化情况。

请添加图片描述

下面是截取的部分预测和真实情况示意图:

请添加图片描述

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...