数论专题(1)数论函数,整数分块
创始人
2024-05-01 08:45:17
0

从今天起,我们将要开始数论的学习,是不是感觉很难?难的话就听我讲吧,讲了后就不难了(bushi)

数论函数定义 (数论函数)

数论函数的定义:在全体正整数(或者整数)上定义的函数称作数论函数。 积性的定义:若 gcd(a,b)=1,则f(ab)=f(a)f(b)。 举个栗子: 欧拉函数\varphi (x) :                                  ​​​​​​​        1(x)=1,Id(x)=x,I(x)=[x=1]。 接下来,我们再举一个函数,狄利克雷卷积: 数论函数f(n)和g(n)的狄利克雷卷积h(n)定义为:         ​​​​​​​        ​​​​​​​        ​​​​​​​                        h(n)=\sum_{d|n}^{}f(d)g(\frac{n}{d}) 记作h=f*g; 定理:两个积性函数的狄利克雷卷积也是积性函数。 那我们是如何证明的呢,那可就说来话长了: h(xy)=\sum_{d_{1}|x}^{}f(d_{1})g(\frac{x}{d_{1}})=\sum_{d_{1}|x}^{}\sum_{d_{2}|y}^{}f(d_{1}d_{2})g(\frac{xy}{d_{1}d_{2}})=\sum_{d_{1}|x}^{}f(d_{1})g(\frac{x}{d_{1}})\sum_{d_{2}|y}^{}f(d_{2})g(\frac{y}{d_{2}})=h(x)h(y) 看到这么长一串的函数,我的心就发抖……… 定理:两个积性函数的对应位置相乘也是积性函数。 这个就很显然了,证明我就不给出来了,你们自己想着吧。 所以我们可以定义更多的数论函数,以及用卷积描述它们之间的关系: 例如:         ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        d(x)=\sum_{d|n}1,即d=1*1         ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        n=\sum_{d|n}\varphi (d),即Id=\varphi *1 接下来,我们来研究一下,卷积的性质: 定理(卷积运算律): 交换律:设有两个积性函数f,g则f*g=g*f 结合律:设有两个积性函数f,g,h则(f*g)*h=f*(h*g) 这不就是乘法结合律吗?小学生都会好不好…… 交换律的证明很显然。 结合律的证明可以把式子改写成矩阵形式,然后用矩阵的结合律 来证明。应该大力推式子也可以。 单位元的定理: I是单位元:对任意的数论函数f,f*I=I*f=f; 证明过程如下: ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        f(n)=\sum_{d|n}^{})f(d)I(\frac{n}{d}) 接下来又来到了下一个函数,狄利克雷逆: 若f*g=I,则数论函数f,g互为彼此的狄利克雷逆。

整数分块

接下来,我们进入下一个章节的学习:整数分块

定理:对于任意的i\left \lfloor \frac{n}{i} \right \rfloor 只有O(\sqrt{n})种取值

证明过程如下:

1\leq i\leq \sqrt{n}时,\frac{n}{i}只有​​​​​​​​​​​​​​O(\sqrt{n})种取值 

i> \sqrt{n}​​​​​​​时,\frac{n}{i}\leq \sqrt{n},也只有O(\sqrt{n})种取值

 综上,只有O(\sqrt{n})种取值

下面举个栗子:

计算下取整分式的和式,计算\sum_{i}^{n}=1\left \lfloor \frac{n}{i} \right \rfloor

由于\left \lfloor \frac{n}{i} \right \rfloor只有O(\sqrt{n})种取值 ,并且,使得 \left \lfloor \frac{n}{i} \right \rfloor取相同的取值的i也是一段一段的,所以我们只需要一段一段地计算即可。

res=0;
for(int l=1,r;l<=n;l=r+1){r=n/(n/l);res+=(r-l+1)*(n/l);
}

哎哟,终于讲完了,累死我了,咱么今天就讲到这里,下篇博文我们会讲莫比乌斯反演,记得来收看哦!! 

 

 

 

 

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
客厅放八骏马摆件可以吗(家里摆... 今天给各位分享客厅放八骏马摆件可以吗的知识,其中也会对家里摆八骏马摆件好吗进行解释,如果能碰巧解决你...
苏州离哪个飞机场近(苏州离哪个... 本篇文章极速百科小编给大家谈谈苏州离哪个飞机场近,以及苏州离哪个飞机场近点对应的知识点,希望对各位有...