【论文阅读】Weakly Supervised Semantic Segmentation using Out-of-Distribution Data
创始人
2024-01-29 04:40:50
0

一篇弱监督分割领域的论文,发表在CVPR2022上:

论文标题:

Weakly Supervised Semantic Segmentation using Out-of-Distribution Data

作者信息:

在这里插入图片描述

代码地址:

https://github.com/naver-ai/w-ood

Abstract

作者认为在WSSS任务中,会出现前景任务和背景任务的一些虚假的相关性,比如车轨和火车。作者利用分类器可能做出错误判断的方法,标注一些分布外(Out-of-Distribution)的数据。用这些数据提供的cue,来减弱分割中的错误关联性。该消耗了较小的标注成本,效果较好。

Introduction

(现有的方法及其缺点)
1.常规的two-stage 分割方法,先生成CAM,再正常训练分割。缺点是仅基于图像级标签,伪标签存在前景和背景线索之间的混淆。需要额外的信息来学习来充分区分前景和背景线索。
2.一些方法引入了显著性检测任务,它自然地以不需要知道类别方式提供了图像中突出的前景对象。但是显著性检测任务对不显著的前景对象并不是很有效。
3.一些方法如超像素、纹理、光流等方法,但是它们往往会生成不准确的对象边界,这种低级信息没有考虑与类相关联的语义,效果也不好。
在这里插入图片描述
(作者的方法)
选择并获取OoD数据,基于度量学习(metric-learning)提出了W-OoD方法(大致的原理是通过训练网络,扩大分布内数据和OoD数据的特征距离)

3. Method

3.1. Collecting the Hard OoD Data

在这里插入图片描述

Where to get the candidate OoDs:
(作者举了构建数据集的四个步骤)
(1)define the list C of foregroundclasses of interest
(2)acquire unlabelled images from various sources
(3)determine for each image whether it contains one of the foreground classes
(4)tag each image with the foreground category labels
作者认为满足步骤(2)但是不满足步骤(3)的图片可以用于candidate OoDs。
(其实就是就是说图像里面没有前景类别的,可以作为OoD数据的候选)
Hard OoD samples via ranking and pruning:
(作者进一步介绍了获得Hard OoD的方法(见图2))
OoD data可能包含太多无关的杂碎信息,作者讲输入到分类器中,按照分类器的输出的预测值 ppp 进行下列操作(混淆分类器的能力):
(1)删除明显不对劲的p<0.5p<0.5p<0.5
(2)对所有的图片按照ppp进行排序
Manual pruning of positive samples
这些数据中可能包含有前景信息(positive)的图片没有去除,需要人工的的进行手动去除。
设图片中包含positive的图片的比例是rrr,需要nnn个Hard OoD图片,则需要人工检查 n/(1−r)n/(1-r)n/(1−r)张图片。
Surrogate source of OoD data
(OoD的数据来源问题)
从理论上讲,最好通过复制Pascal数据集构建过程来获得硬OoD集,以便在Pascal上分析和基准测试作者的方法。但这个显然是不行的,无法找到和Pascal数据集相同分布的图像。
作者使用的是OpenImages数据集,使用提供的类别标签从OpenImages数据集中过滤出20个Pascal类,以模拟Pascal数据集。

3.2. Learning with Hard OoD Dataset

(利用Hard OoD Dataset的方法)
比较简略的方式是把这些标签均匀分布到原本的数据集中, 或者直接标记伪“背景”类插入到数据集中,显然这样效果不好(忽略了样本的多样性)。
作者的目标是训练一个分类器FFF,来使常规数据的特征zinz_{in}zin​和OoD数据zOoDz_{OoD}zOoD​的距离尽可能的远。采用聚类的方法。
记ZinZ_{in}Zin​和ZOoDZ_{OoD}ZOoD​分别表示常规数据的特征和OoD数据经过分类器的特征的集合。
对于常规数据ZinZ_{in}Zin​,构建一类簇PinP^{in}Pin,其中包含ccc个类别,每个类别代表其前景对象的种类。
对于OoD数据作者并没有使用对应的方法,而是使用K-means聚类成kkk个类别,构建了POoDP^{OoD}POoD。
这样就有两大类簇,分别是:Pin={Pcin}c=1CP^{in}=\{P_c^{in}\}_{c=1}^CPin={Pcin​}c=1C​和POoD={PkOoD}k=1KP^{OoD}=\{P_k^{OoD}\}_{k=1}^KPOoD={PkOoD​}k=1K​。
聚类中心由图像决定,计算方法是:
在这里插入图片描述
类到聚类中心的计算方法:
在这里插入图片描述
对于作者提出的方法,希望簇PinP^{in}Pin到中心的距离越小越好,希望POoDP^{OoD}POoD到中心的距离越远越好,即设计损失函数:
在这里插入图片描述
作者也将类别损失函数加进入了,对于常规的数据,用正常的类别标签计算损失,对于OoD则标签是全0,cls损失的计算方法:
在这里插入图片描述
总的损失函数:
在这里插入图片描述

3.3. Training Segmentation Networks

上述过程仅仅训练了一个分类器FFF,对于后面的产生伪mask的操作,作者采用的是IRNet的方法。

Experiments

(简单看下实验结果)
在这里插入图片描述

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...