【Python机器学习】神经网络中全连接层与线性回归的讲解及实战(Tensorflow、MindSpore平台 附源码)
创始人
2024-04-26 17:45:07
0

需要全部代码请点赞关注收藏后评论区留言私信~~~

全连接层与线性回归

神经网络模型也是参数学习模型,因为对它的学习只是得到神经网络参数的最优值,而神经网络的结构必须事先设计好。如果确实不能通过改进学习过程来达到理想效果,则要重新设计神经网络的结构。

层状神经网络的隐层和输出层具有处理信息的能力,它们又可细分为全连接层、卷积层、池化层、LSTM层等等,通过适当排列可以组合成适应不同任务的网络。

全连接层是层状神经网络最基本的层,本小节从线性回归模型入手,深入讨论全连接层。

线性回归模型改写为:

 

神经元模型

 

可以将线性回归看成是神经元模型,其阈值θ=w^(0),其激励函数为等值函数f(x)=x,即该神经元是没有激励函数的特殊神经元。

先定义一个二维平面上的线性目标函数并用它来生成训练样本,再定义一个代表线性回归模型的神经网络,然后用训练样本对该网络进行训练,并在训练的过程中动态显示线性模型的拟合过程。

效果如下 

 

 代码如下

### 定义训练样本生成函数
import numpy as np
np.random.seed(1101) # 指定随机数种子,产生相同的随机数,便于观察试验结果def f(x, w=3.0, b=1.0): # 目标函数return x * w + bdef get_data(num):for _ in range(num):x = np.random.uniform(-10.0, 10.0)noise = np.random.normal(0, 3)y = f(x) + noiseyield np.array([x]).astype(np.float32), np.array([y]).astype(np.float32)
### 生成训练样本并增强
from mindspore import dataset as ds
import matplotlib.pyplot as pltdata_number = 80 # 样本总数
batch_size = 16 # 每批训练样本数(批梯度下降法)
repeat_size = 1train_data = list(get_data(data_number))
X, y = zip(*train_data)
plt.scatter(X, y, color="black", s=10)
xx = np.arange(-10.0, 10, 1)
yy = f(xx)
plt.plot(xx, yy, color="red", linewidth=1, linestyle='-')
plt.show()

按上述方法构建的层被称为全连接层(fully connected layers),它是层状神经网络最基本的层。

全连接层的每一个节点都与上一层的所有节点相连。设前一层的输出为X=(x_1, x_2,…,x_i,…,x_m),本层的输出为Y=(y_1, y_2,…,y_j,…,y_n),其中:

 

定义连接系数矩阵:

 

和阈值系数向量:

 

全连接层的计算可以写成矩阵形式:

 

在全连接层中,连接系数和阈值系数是要训练的参数,它们一共有m×n+n个。

动态拟合过程,当训练到第十轮左右的时候模型拟合度已经十分高了 

 

代码如下

import numpy as np
np.random.seed(1101) # 指定随机数种子,产生相同的随机数,便于观察试验结果def f(x, w=3.0, b=1.0): # 目标函数return x * w + bdef get_data(num):for _ in range(num):x = np.random.uniform(-10.0, 10.0)noise = np.random.normal(0, 3)y = f(x) + noiseyield np.array([x]).astype(np.float32), np.array([y]).astype(np.float32)
from mindspore import dataset as ds
import matplotlib.pyplot as pltdata_number = 80 # 样本总数
batch_size = 16 # 每批训练样本数(批梯度下降法)
repeat_size = 1train_data = list(get_data(data_number))
X, y = zip(*train_data)
plt.scatter(X, y, color="black", s=10)
xx = np.arange(-10.0, 10, 1)
yy = f(xx)
plt.plot(xx, yy, color="red", linewidth=1, linestyle='-')
plt.show()
import time
from mindspore import Tensordef plot_model_and_datasets(net, train_data):weight = net.trainable_params()[0]bias = net.trainable_params()[1]x = np.arange(-10, 10, 1)y = x * Tensor(weight).asnumpy()[0][0] + Tensor(bias).asnumpy()[0]x1, y1 = zip(*train_data)x_target = xy_target = f(x_target)plt.axis([-11, 11, -20, 25])plt.scatter(x1, y1, color="black", s=10)plt.plot(x, y, color="blue", linestyle=':', linewidth=2)plt.plot(x_target, y_target, color="red")plt.show()time.sleep(0.02)from IPython import display
from mindspore.train.callback import Callbackclass ImageShowCallback(Callback): # 回调类def __init__(self, net, train_data):self.net = netself.train_data = train_datadef step_end(self, run_context):plot_model_and_datasets(self.net, self.train_data)display.clear_output(wait=True)

 创作不易 觉得有帮助请点赞关注收藏~~~

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
客厅放八骏马摆件可以吗(家里摆... 今天给各位分享客厅放八骏马摆件可以吗的知识,其中也会对家里摆八骏马摆件好吗进行解释,如果能碰巧解决你...
苏州离哪个飞机场近(苏州离哪个... 本篇文章极速百科小编给大家谈谈苏州离哪个飞机场近,以及苏州离哪个飞机场近点对应的知识点,希望对各位有...