GAN生成漫画脸
创始人
2024-04-15 00:02:24
0

最近对对抗生成网络GAN比较感兴趣,相关知识点文章还在编辑中,以下这个是一个练手的小项目~

 (在原模型上做了,为了减少计算量让其好训练一些。)

一、导入工具包

import tensorflow as tf
from tensorflow.keras import layersimport numpy as np
import os
import time
import glob
import matplotlib.pyplot as plt
from IPython.display import clear_output
from IPython import display

1.1 设置GPU

gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")
gpus 
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

二、导入训练数据

链接: 点这里

fileList = glob.glob('./ani_face/*.jpg')
len(fileList)
41621

2.1 数据可视化 

# 随机显示几张图
for index,i in enumerate(fileList[:3]):display.display(display.Image(fileList[index]))

2.2 数据预处理

# 文件名列表
path_ds = tf.data.Dataset.from_tensor_slices(fileList)# 预处理,归一化,缩放
def load_and_preprocess_image(path):image = tf.io.read_file(path)image = tf.image.decode_jpeg(image, channels=3)image = tf.image.resize(image, [64, 64])image /= 255.0  # normalize to [0,1] rangeimage = tf.reshape(image, [1, 64,64,3])return imageimage_ds = path_ds.map(load_and_preprocess_image)
image_ds
# 查看一张图片
for x in image_ds:plt.axis("off")plt.imshow((x.numpy() * 255).astype("int32")[0])break

三、网络构建

3.1 D网络

discriminator = keras.Sequential([keras.Input(shape=(64, 64, 3)),layers.Conv2D(64, kernel_size=4, strides=2, padding="same"),layers.LeakyReLU(alpha=0.2),layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),layers.LeakyReLU(alpha=0.2),layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),layers.LeakyReLU(alpha=0.2),layers.Flatten(),layers.Dropout(0.2),layers.Dense(1, activation="sigmoid"),],name="discriminator",
)
discriminator.summary()
Model: "discriminator"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 32, 32, 64)        3136      
_________________________________________________________________
leaky_re_lu (LeakyReLU)      (None, 32, 32, 64)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 16, 16, 128)       131200    
_________________________________________________________________
leaky_re_lu_1 (LeakyReLU)    (None, 16, 16, 128)       0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 8, 8, 128)         262272    
_________________________________________________________________
leaky_re_lu_2 (LeakyReLU)    (None, 8, 8, 128)         0         
_________________________________________________________________
flatten (Flatten)            (None, 8192)              0         
_________________________________________________________________
dropout (Dropout)            (None, 8192)              0         
_________________________________________________________________
dense (Dense)                (None, 1)                 8193      
=================================================================
Total params: 404,801
Trainable params: 404,801
Non-trainable params: 0

3.2 G网络

latent_dim = 128generator = keras.Sequential([keras.Input(shape=(latent_dim,)),layers.Dense(8 * 8 * 128),layers.Reshape((8, 8, 128)),layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding="same"),layers.LeakyReLU(alpha=0.2),layers.Conv2DTranspose(256, kernel_size=4, strides=2, padding="same"),layers.LeakyReLU(alpha=0.2),layers.Conv2DTranspose(512, kernel_size=4, strides=2, padding="same"),layers.LeakyReLU(alpha=0.2),layers.Conv2D(3, kernel_size=5, padding="same", activation="sigmoid"),],name="generator",
)
generator.summary()

3.3 重写 train_step

class GAN(keras.Model):def __init__(self, discriminator, generator, latent_dim):super(GAN, self).__init__()self.discriminator = discriminatorself.generator = generatorself.latent_dim = latent_dimdef compile(self, d_optimizer, g_optimizer, loss_fn):super(GAN, self).compile()self.d_optimizer = d_optimizerself.g_optimizer = g_optimizerself.loss_fn = loss_fnself.d_loss_metric = keras.metrics.Mean(name="d_loss")self.g_loss_metric = keras.metrics.Mean(name="g_loss")@propertydef metrics(self):return [self.d_loss_metric, self.g_loss_metric]def train_step(self, real_images):# 生成噪音batch_size = tf.shape(real_images)[0]random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim))# 生成的图片generated_images = self.generator(random_latent_vectors)# Combine them with real imagescombined_images = tf.concat([generated_images, real_images], axis=0)# Assemble labels discriminating real from fake imageslabels = tf.concat([tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))], axis=0)# Add random noise to the labels - important trick!labels += 0.05 * tf.random.uniform(tf.shape(labels))# 训练判别器,生成的当成0,真实的当成1 with tf.GradientTape() as tape:predictions = self.discriminator(combined_images)d_loss = self.loss_fn(labels, predictions)grads = tape.gradient(d_loss, self.discriminator.trainable_weights)self.d_optimizer.apply_gradients(zip(grads, self.discriminator.trainable_weights))# Sample random points in the latent spacerandom_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim))# Assemble labels that say "all real images"misleading_labels = tf.zeros((batch_size, 1))# Train the generator (note that we should *not* update the weights# of the discriminator)!with tf.GradientTape() as tape:predictions = self.discriminator(self.generator(random_latent_vectors))g_loss = self.loss_fn(misleading_labels, predictions)grads = tape.gradient(g_loss, self.generator.trainable_weights)self.g_optimizer.apply_gradients(zip(grads, self.generator.trainable_weights))# Update metricsself.d_loss_metric.update_state(d_loss)self.g_loss_metric.update_state(g_loss)return {"d_loss": self.d_loss_metric.result(),"g_loss": self.g_loss_metric.result(),}

3.4 设置回调函数

class GANMonitor(keras.callbacks.Callback):def __init__(self, num_img=3, latent_dim=128):self.num_img = num_imgself.latent_dim = latent_dimdef on_epoch_end(self, epoch, logs=None):random_latent_vectors = tf.random.normal(shape=(self.num_img, self.latent_dim))generated_images = self.model.generator(random_latent_vectors)generated_images *= 255generated_images.numpy()for i in range(self.num_img):img = keras.preprocessing.image.array_to_img(generated_images[i])display.display(img)img.save("gen_ani/generated_img_%03d_%d.png" % (epoch, i))

四、训练模型

epochs = 100  # In practice, use ~100 epochsgan = GAN(discriminator=discriminator, generator=generator, latent_dim=latent_dim)
gan.compile(d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),loss_fn=keras.losses.BinaryCrossentropy(),
)gan.fit(image_ds, epochs=epochs, callbacks=[GANMonitor(num_img=10, latent_dim=latent_dim)]
)

五、保存模型

#保存模型
gan.generator.save('./data/ani_G_model')

生成模型文件:点这里

六、生成漫画脸

G_model =  tf.keras.models.load_model('./data/ani_G_model/',compile=False)def randomGenerate():noise_seed = tf.random.normal([16, 128])predictions = G_model(noise_seed, training=False)fig = plt.figure(figsize=(8, 8))for i in range(predictions.shape[0]):plt.subplot(4, 4, i+1)img = (predictions[i].numpy() * 255 ).astype('int')plt.imshow(img )plt.axis('off')plt.show()
count = 0
while True:randomGenerate()clear_output(wait=True)time.sleep(0.1)if count > 100:breakcount+=1

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
客厅放八骏马摆件可以吗(家里摆... 今天给各位分享客厅放八骏马摆件可以吗的知识,其中也会对家里摆八骏马摆件好吗进行解释,如果能碰巧解决你...
苏州离哪个飞机场近(苏州离哪个... 本篇文章极速百科小编给大家谈谈苏州离哪个飞机场近,以及苏州离哪个飞机场近点对应的知识点,希望对各位有...