[世界杯]根据赔率计算各种组合可能性与赔率
创始人
2024-04-14 19:51:10
0

目录

一、背景

二、数据输入

2.1 赔率示意图

2.2 代码

三、数据处理

3.1 计算各种组合可能性

3.2 修正概率

四、输出结果


一、背景

本文以世界杯体彩“混合过关”4场串胜平负为的赔率进行编码

其他类型如比分 、总进球数可以参考代码进行相应修改

需要的库:numpy与pandas

二、数据输入

2.1 赔率示意图

 2.2 代码

采用字典保存各比赛对应的胜平负的赔率

import pandas as pd
import numpy as npvs1 = {"胜":2.38,"平":2.93,"负":2.65} #厄瓜多尔-塞内加尔
vs2 = {"胜":13.0,"平":6.20,"负":1.11} #卡塔尔-荷兰
vs3 = {"胜":3.58,"平":3.16,"负":1.84} #伊朗-美国
vs4 = {"胜":7.35,"平":4.16,"负":1.31} #威尔士-英格兰

三、数据处理

3.1 计算各种组合可能性

计算采用的公式主要为:(图中10%为抽水率,仅为假设)

其中0.9913为初步计算得到的体彩抽水率,实际不准确,该数值仅供初步计算,之后需要根据计算所得的概率进行相应修正

count = 1
probList = []
probListIndex = []
probVs = []
timesList = []vsCode1 = []
vsCode2 = []
vsCode3 = []
vsCode4 = []for key1,each1 in vs1.items():for key2,each2 in vs2.items():for key3,each3 in vs3.items():for key4,each4 in vs4.items():
#             print(count,key1,key2,key3,each1*each2*each3)prob = 99.13 / (each1*each2*each3*each4)#print(count,key1,key2,key3,key4,prob)probList.append(prob)probListIndex.append(count)probVs.append(key1+key2+key3+key4)timesList.append(each1*each2*each3*each4)vsCode1.append(key1)vsCode2.append(key2)vsCode3.append(key3)vsCode4.append(key4)count += 1data = pd.DataFrame(probList,index = probListIndex,columns=["prob"])
data_temp = pd.DataFrame(probVs,index = probListIndex,columns=["vs"])
data_times = pd.DataFrame(timesList,index = probListIndex,columns=["times"])data_vs1 = pd.DataFrame(vsCode1,index = probListIndex,columns=["vs1"])
data_vs2 = pd.DataFrame(vsCode2,index = probListIndex,columns=["vs2"])
data_vs3 = pd.DataFrame(vsCode3,index = probListIndex,columns=["vs3"])
data_vs4 = pd.DataFrame(vsCode4,index = probListIndex,columns=["vs4"])# data = data.add(data_temp,fill_value=False)
data["vs"] = data_temp["vs"]
data["vs1"] = data_vs1["vs1"]
data["vs2"] = data_vs2["vs2"]
data["vs3"] = data_vs3["vs3"]
data["vs4"] = data_vs4["vs4"]data["times"] = data_times["times"]
data = data.sort_values(by="prob",ascending=False)
data["total_prob"] = 0sum_prob = 0
for each in data.index:
#     print(each)sum_prob += data["prob"].loc[each]data["total_prob"].loc[each] = sum_prob

3.2 修正概率

该段代码无实际含义,仅为修正由于采用估计抽水率计算所得的概率偏差

主要思路是采用数据标准化后并将数据映射到合理的区间,并对部分概率进行转换

total_prob_min = data["total_prob"].min()
data["total_prob"] = (data["total_prob"]-data["total_prob"].min())/(data["total_prob"].max()-data["total_prob"].min())*(100-total_prob_min)+total_prob_min
data["total_prob"].iloc[0] = (data["total_prob"].iloc[1]*data["total_prob"].iloc[0])/(data["prob"].iloc[1]+data["total_prob"].iloc[0])temp = data["total_prob"] - data["total_prob"].shift(1)
temp[0] = data["total_prob"].iloc[0]
data["prob"] = temp
data["prob"].iloc[0] = data["total_prob"].iloc[0]
data.to_csv(r"C:\Users\kkkk\Desktop\世界杯1129.csv")

四、输出结果

prob该组合可能性,total_prob为累计可能性,times为赔率,VS1~4为该组合对应的胜平负

 以11.29日赛程为参考,卡塔尔与威尔士大概率负,因此采用Excel筛选出相关组合,在所列组合中选取赔率较高的组合。

五、代码

import pandas as pd
import numpy as npvs1 = {"胜":2.38,"平":2.93,"负":2.65}
vs2 = {"胜":13.0,"平":6.20,"负":1.11}
vs3 = {"胜":3.58,"平":3.16,"负":1.84}
vs4 = {"胜":7.35,"平":4.16,"负":1.31}count = 1
probList = []
probListIndex = []
probVs = []
timesList = []vsCode1 = []
vsCode2 = []
vsCode3 = []
vsCode4 = []for key1,each1 in vs1.items():for key2,each2 in vs2.items():for key3,each3 in vs3.items():for key4,each4 in vs4.items():
#             print(count,key1,key2,key3,each1*each2*each3)prob = 99.13 / (each1*each2*each3*each4)print(count,key1,key2,key3,key4,prob)probList.append(prob)probListIndex.append(count)probVs.append(key1+key2+key3+key4)timesList.append(each1*each2*each3*each4)vsCode1.append(key1)vsCode2.append(key2)vsCode3.append(key3)vsCode4.append(key4)count += 1data = pd.DataFrame(probList,index = probListIndex,columns=["prob"])
data_temp = pd.DataFrame(probVs,index = probListIndex,columns=["vs"])
data_times = pd.DataFrame(timesList,index = probListIndex,columns=["times"])data_vs1 = pd.DataFrame(vsCode1,index = probListIndex,columns=["vs1"])
data_vs2 = pd.DataFrame(vsCode2,index = probListIndex,columns=["vs2"])
data_vs3 = pd.DataFrame(vsCode3,index = probListIndex,columns=["vs3"])
data_vs4 = pd.DataFrame(vsCode4,index = probListIndex,columns=["vs4"])# data = data.add(data_temp,fill_value=False)
data["vs"] = data_temp["vs"]
data["vs1"] = data_vs1["vs1"]
data["vs2"] = data_vs2["vs2"]
data["vs3"] = data_vs3["vs3"]
data["vs4"] = data_vs4["vs4"]data["times"] = data_times["times"]
data = data.sort_values(by="prob",ascending=False)
data["total_prob"] = 0sum_prob = 0
for each in data.index:
#     print(each)sum_prob += data["prob"].loc[each]data["total_prob"].loc[each] = sum_probtotal_prob_min = data["total_prob"].min()
data["total_prob"] = (data["total_prob"]-data["total_prob"].min())/(data["total_prob"].max()-data["total_prob"].min())*(100-total_prob_min)+total_prob_min
data["total_prob"].iloc[0] = (data["total_prob"].iloc[1]*data["total_prob"].iloc[0])/(data["prob"].iloc[1]+data["total_prob"].iloc[0])temp = data["total_prob"] - data["total_prob"].shift(1)
temp[0] = data["total_prob"].iloc[0]
data["prob"] = temp
data["prob"].iloc[0] = data["total_prob"].iloc[0]data.to_csv(r"C:\Users\kkkk\Desktop\世界杯1129.csv")

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
客厅放八骏马摆件可以吗(家里摆... 今天给各位分享客厅放八骏马摆件可以吗的知识,其中也会对家里摆八骏马摆件好吗进行解释,如果能碰巧解决你...
苏州离哪个飞机场近(苏州离哪个... 本篇文章极速百科小编给大家谈谈苏州离哪个飞机场近,以及苏州离哪个飞机场近点对应的知识点,希望对各位有...