此系列属于胡寿松《自动控制原理题海与考研指导》(第三版)习题精选,仅包含部分经典习题,需要完整版习题答案请自行查找,本系列属于知识点巩固部分,搭配如下几个系列进行学习,可用于期末考试和考研复习。
自动控制原理(第七版)知识提炼
自动控制原理(第七版)课后习题精选
自动控制原理(第七版)附录MATLAB基础
已知下图系统采用单速同步采样工作方式,采样周期T=0.1T=0.1T=0.1。求:
解:
求C(z)/R(z)C(z)/R(z)C(z)/R(z)。
令
G1(s)=1−e−Tss⋅0.5s(0.05s+1),H(s)=2G_1(s)=\frac{1-{\rm e}^{-Ts}}{s}·\frac{0.5}{s(0.05s+1)},H(s)=2 G1(s)=s1−e−Ts⋅s(0.05s+1)0.5,H(s)=2
则
G1H(z)=(1−z−1)Z[1s2(0.05s+1)]=(1−z−1)Z[20s2(s+20)]=(1−z−1)20Z[20s2−1s+1s+20]=120(1−z−1)[20Tz(z−1)2−zz−1+zz−e−20T]=(20T−1+e−20T)z+(1−e−20T−20Te−20T)20(z−1)(z−e−20T)\begin{aligned} G_1H(z)&=(1-z^{-1})Z\left[\frac{1}{s^2(0.05s+1)}\right]=(1-z^{-1})Z\left[\frac{20}{s^2(s+20)}\right]\\\\ &=\frac{(1-z^{-1})}{20}Z\left[\frac{20}{s^2}-\frac{1}{s}+\frac{1}{s+20}\right]=\frac{1}{20}(1-z^{-1})\left[\frac{20Tz}{(z-1)^2}-\frac{z}{z-1}+\frac{z}{z-{\rm e}^{-20T}}\right]\\\\ &=\frac{(20T-1+{\rm e}^{-20T})z+(1-{\rm e}^{-20T}-20T{\rm e}^{-20T})}{20(z-1)(z-{\rm e}^{-20T})} \end{aligned} G1H(z)=(1−z−1)Z[s2(0.05s+1)1]=(1−z−1)Z[s2(s+20)20]=20(1−z−1)Z[s220−s1+s+201]=201(1−z−1)[(z−1)220Tz−z−1z+z−e−20Tz]=20(z−1)(z−e−20T)(20T−1+e−20T)z+(1−e−20T−20Te−20T)
代入T=0.1T=0.1T=0.1可得:
G1H(z)=0.057z+0.03z2−1.135z+0.135G_1H(z)=\frac{0.057z+0.03}{z^2-1.135z+0.135} G1H(z)=z2−1.135z+0.1350.057z+0.03
闭环脉冲传递函数为:
Φ(z)=C(z)R(z)=KG1(z)1+KG1H(z)=K(0.028z+0.015)z2+(0.057K−1.135)z+(0.03K+0.135)\Phi(z)=\frac{C(z)}{R(z)}=\frac{KG_1(z)}{1+KG_1H(z)}=\frac{K(0.028z+0.015)}{z^2+(0.057K-1.135)z+(0.03K+0.135)} Φ(z)=R(z)C(z)=1+KG1H(z)KG1(z)=z2+(0.057K−1.135)z+(0.03K+0.135)K(0.028z+0.015)
求KKK值范围。
系统闭环特征方程为:
D(z)=z2+(0.057K−1.135)z+(0.03K+0.135)=0D(z)=z^2+(0.057K-1.135)z+(0.03K+0.135)=0 D(z)=z2+(0.057K−1.135)z+(0.03K+0.135)=0
令z=w+1w−1z=\displaystyle\frac{w+1}{w-1}z=w−1w+1,可得:
D(w)=0.087Kw2+(1.73−0.06K)w+(2.27−0.027K)=0D(w)=0.087Kw^2+(1.73-0.06K)w+(2.27-0.027K)=0 D(w)=0.087Kw2+(1.73−0.06K)w+(2.27−0.027K)=0
根据稳定的充要条件,应有:
K>0,1.73−0.06K>0,2.27−0.027K>0K>0,1.73-0.06K>0,2.27-0.027K>0 K>0,1.73−0.06K>0,2.27−0.027K>0
解得:
0
求稳态输出。
令K=1K=1K=1,单位阶跃输入的zzz变换为:R(z)=zz−1R(z)=\displaystyle\frac{z}{z-1}R(z)=z−1z。
闭环脉冲传递函数为:
Φ(z)=0.028z+0.015z2−1.078z+0.165\Phi(z)=\frac{0.028z+0.015}{z^2-1.078z+0.165} Φ(z)=z2−1.078z+0.1650.028z+0.015
由zzz变换终值定理可得:
c(∞)=limz→1(1−z−1)C(z)=limz→1(1−z−1)Φ(z)R(z)=limz→1[z−1z×0.028z+0.015z2−1.078z+0.165×zz−1]=0.5\begin{aligned} c(\infty)&=\lim_{z\to1}(1-z^{-1})C(z)=\lim_{z\to1}(1-z^{-1})\Phi(z)R(z)\\\\ &=\lim_{z\to1}\left[\frac{z-1}{z}\times\frac{0.028z+0.015}{z^2-1.078z+0.165}\times\frac{z}{z-1}\right]\\\\ &=0.5 \end{aligned} c(∞)=z→1lim(1−z−1)C(z)=z→1lim(1−z−1)Φ(z)R(z)=z→1lim[zz−1×z2−1.078z+0.1650.028z+0.015×z−1z]=0.5
已知采样系统如下图所示,各采样开关同步工作,采样周期TTT及时间常数T0T_0T0均大于零的实常数,且e−T/T0=0.2{\rm e}^{-T/T_0}=0.2e−T/T0=0.2。要求:
解:
求KKK值范围。
因为D(z)=1D(z)=1D(z)=1,故系统开环传递函数为:
G(s)=(1−e−Ts)Ke−Tss(T0s+1)G(s)=\frac{(1-{\rm e}^{-Ts})K{\rm e}^{-Ts}}{s(T_0s+1)} G(s)=s(T0s+1)(1−e−Ts)Ke−Ts
开环脉冲传递函数为:
G(z)=Kz−1(1−z−1)Z[1/T0s(s+1/T0)]=Kz−1z2⋅(1−e−T/T0)z(z−1)(z−e−T/T0)G(z)=Kz^{-1}(1-z^{-1})Z\left[\frac{1/T_0}{s(s+1/T_0)}\right]=K\frac{z-1}{z^2}·\frac{(1-{\rm e}^{-T/T_0})z}{(z-1)(z-{\rm e}^{-T/T_0})} G(z)=Kz−1(1−z−1)Z[s(s+1/T0)1/T0]=Kz2z−1⋅(z−1)(z−e−T/T0)(1−e−T/T0)z
代入e−T/T0=0.2{\rm e}^{-T/T_0}=0.2e−T/T0=0.2,可得:
G(z)=0.8Kz(z−0.2)G(z)=\frac{0.8K}{z(z-0.2)} G(z)=z(z−0.2)0.8K
闭环脉冲传递函数为:
Φ(z)=G(z)1+G(z)=0.8Kz2−0.2z+0.8K\Phi(z)=\frac{G(z)}{1+G(z)}=\frac{0.8K}{z^2-0.2z+0.8K} Φ(z)=1+G(z)G(z)=z2−0.2z+0.8K0.8K
闭环特征方程为:
D(z)=z2−0.2z+0.8K=0D(z)=z^2-0.2z+0.8K=0 D(z)=z2−0.2z+0.8K=0
令z=w+1w−1z=\displaystyle\frac{w+1}{w-1}z=w−1w+1,代入特征方程可得:
D(w)=0.8(1+K)w2+(2−1.6K)w+(1.2+0.8K)=0D(w)=0.8(1+K)w^2+(2-1.6K)w+(1.2+0.8K)=0 D(w)=0.8(1+K)w2+(2−1.6K)w+(1.2+0.8K)=0
可得:
1+K>0,2−1.6K>0,1.2+0.8K>01+K>0,2-1.6K>0,1.2+0.8K>0 1+K>0,2−1.6K>0,1.2+0.8K>0
在K>0K>0K>0要求下,使系统稳定的KKK值范围为:0
求a,b,ca,b,ca,b,c。
令K=1,D(z)=bz+cz−1K=1,D(z)=\displaystyle\frac{bz+c}{z-1}K=1,D(z)=z−1bz+c,系统闭环特征方程为:
1+D(z)G(z)=01+D(z)G(z)=0 1+D(z)G(z)=0
代入D(z)D(z)D(z)及G(z)G(z)G(z),可得:
z3−1.2z2+(0.2+0.8b)z+0.8c=0z^3-1.2z^2+(0.2+0.8b)z+0.8c=0 z3−1.2z2+(0.2+0.8b)z+0.8c=0
由题意,采样系统有三重根aaa,则闭环特征方程表示为:
1+D(z)G(z)=(z−a)3=01+D(z)G(z)=(z-a)^3=0 1+D(z)G(z)=(z−a)3=0
即
z3−3az2+3a2z−a3=0z^3-3az^2+3a^2z-a^3=0 z3−3az2+3a2z−a3=0
对比系数有:
{3a=1.23a2=0.2+0.8ba3=−0.8c⇒{a=0.4b=3a2−0.20.8=0.35c=−a30.8=−0.08\begin{cases} &3a=1.2\\\\ &3a^2=0.2+0.8b\\\\ &a^3=-0.8c \end{cases}\Rightarrow\begin{cases} &a=0.4\\\\ &b=\displaystyle\frac{3a^2-0.2}{0.8}=0.35\\\\ &c=-\displaystyle\frac{a^3}{0.8}=-0.08 \end{cases} ⎩⎨⎧3a=1.23a2=0.2+0.8ba3=−0.8c⇒⎩⎨⎧a=0.4b=0.83a2−0.2=0.35c=−0.8a3=−0.08
设采样系统如下图所示,已知r(t)=1(t),T=1r(t)=1(t),T=1r(t)=1(t),T=1。计算D(z)D(z)D(z),使系统输出量的zzz闭环C(z)=1z−1C(z)=\displaystyle\frac{1}{z-1}C(z)=z−11,并作出c∗(t)c^*(t)c∗(t)的图形。(提示:Z[1s+a]=zz−e−aT)\left(提示:Z\left[\displaystyle\frac{1}{s+a}\right]=\displaystyle\frac{z}{z-{\rm e}^{-aT}}\right)(提示:Z[s+a1]=z−e−aTz).
解:
由图可得:
G1(s)=1−e−Tss(s+1),G1(z)=1−e−Tz−e−T=0.632z−0.368G_1(s)=\frac{1-{\rm e}^{-Ts}}{s(s+1)},G_1(z)=\frac{1-{\rm e}^{-T}}{z-{\rm e}^{-T}}=\frac{0.632}{z-0.368} G1(s)=s(s+1)1−e−Ts,G1(z)=z−e−T1−e−T=z−0.3680.632
开环脉冲传递函数为:
G(z)=D(z)G1(z)G(z)=D(z)G_1(z) G(z)=D(z)G1(z)
输出zzz变换:
C(z)=Φ(z)R(z)=D(z)G1(z)R(z)1+D(z)G1(z)⇒D(z)=C(z)G1(z)[R(z)−C(z)]C(z)=\Phi(z)R(z)=\frac{D(z)G_1(z)R(z)}{1+D(z)G_1(z)}\Rightarrow{D(z)}=\frac{C(z)}{G_1(z)[R(z)-C(z)]} C(z)=Φ(z)R(z)=1+D(z)G1(z)D(z)G1(z)R(z)⇒D(z)=G1(z)[R(z)−C(z)]C(z)
因
R(z)=zz−1,C(z)=1z−1R(z)=\frac{z}{z-1},C(z)=\frac{1}{z-1} R(z)=z−1z,C(z)=z−11
可得:
D(z)=1.582(z−0.368)z−1D(z)=\frac{1.582(z-0.368)}{z-1} D(z)=z−11.582(z−0.368)
由于
C(z)=1z−1=z−1+z−2+z−3+z−4+⋯+C(z)=\frac{1}{z-1}=z^{-1}+z^{-2}+z^{-3}+z^{-4}+\cdots+ C(z)=z−11=z−1+z−2+z−3+z−4+⋯+
故
c∗(t)=δ(t−T)+δ(t−2T)+δ(t−3T)+δ(t−4T)+⋯+c^*(t)=\delta(t-T)+\delta(t-2T)+\delta(t-3T)+\delta(t-4T)+\cdots+ c∗(t)=δ(t−T)+δ(t−2T)+δ(t−3T)+δ(t−4T)+⋯+
【c∗(t)c^*(t)c∗(t)的图形】
已知采样系统如下图所示。确定增益KKK的取值范围,使系统在单位斜坡输入信号作用下的稳态误差∣ess(∞)∣≤ϵ|e_{ss}(\infty)|≤\epsilon∣ess(∞)∣≤ϵ,并确定KKK与采样周期及指定误差界ϵ\epsilonϵ之间的关系。
解:
求闭环特征方程。
由图可知,令
G1(s)=K(1−e−Ts)s(s+1)G_1(s)=\frac{K(1-{\rm e}^{-Ts})}{s(s+1)} G1(s)=s(s+1)K(1−e−Ts)
可得:
G1(z)=K(1−z−1)Z[1s(s+1)]=K(1−z−1)(zz−1−zz−e−T)=K(1−e−T)z−e−TG_1(z)=K(1-z^{-1})Z\left[\frac{1}{s(s+1)}\right]=K(1-z^{-1})\left(\frac{z}{z-1}-\frac{z}{z-{\rm e}^{-T}}\right)=\frac{K(1-{\rm e}^{-T})}{z-{\rm e}^{-T}} G1(z)=K(1−z−1)Z[s(s+1)1]=K(1−z−1)(z−1z−z−e−Tz)=z−e−TK(1−e−T)
因为
d∗(k)=d∗(k−1)+e∗(k)⇒(1−z−1)d(z)=e(z)⇒D(z)=d(z)e(z)=zz−1d^*(k)=d^*(k-1)+e^*(k)\Rightarrow(1-z^{-1})d(z)=e(z)\Rightarrow{D(z)}=\frac{d(z)}{e(z)}=\frac{z}{z-1} d∗(k)=d∗(k−1)+e∗(k)⇒(1−z−1)d(z)=e(z)⇒D(z)=e(z)d(z)=z−1z
开环脉冲传递函数为:
G(z)=D(z)G1(z)=Kz(1−e−T)z2−(1+e−T)z+e−TG(z)=D(z)G_1(z)=\frac{Kz(1-{\rm e}^{-T})}{z^2-(1+{\rm e}^{-T})z+{\rm e}^{-T}} G(z)=D(z)G1(z)=z2−(1+e−T)z+e−TKz(1−e−T)
闭环脉冲传递函数为:
Φ(z)=G(z)1+G(z)=Kz(1−e−T)z2+[K(1−e−T)−(1+e−T)]z+e−T\Phi(z)=\frac{G(z)}{1+G(z)}=\frac{Kz(1-{\rm e}^{-T})}{z^2+[K(1-{\rm e}^{-T})-(1+{\rm e}^{-T})]z+{\rm e}^{-T}} Φ(z)=1+G(z)G(z)=z2+[K(1−e−T)−(1+e−T)]z+e−TKz(1−e−T)
可得闭环特征方程:
D(z)=z2+[K(1−e−T)−(1+e−T)]z+e−T=0D(z)=z^2+[K(1-{\rm e}^{-T})-(1+{\rm e}^{-T})]z+{\rm e}^{-T}=0 D(z)=z2+[K(1−e−T)−(1+e−T)]z+e−T=0
令
a=K(1−e−T)−(1+e−T)⇒D(z)=z2+az+e−T=0a=K(1-{\rm e}^{-T})-(1+{\rm e}^{-T})\Rightarrow{D(z)}=z^2+az+{\rm e}^{-T}=0 a=K(1−e−T)−(1+e−T)⇒D(z)=z2+az+e−T=0
求使系统稳定的KKK值。
令z=w+1w−1z=\displaystyle\frac{w+1}{w-1}z=w−1w+1,代入特征方程,整理可得:
D(w)=(1+a+e−T)w2+(2−2e−T)w+(1−a+e−T)=0D(w)=(1+a+{\rm e}^{-T})w^2+(2-2{\rm e}^{-T})w+(1-a+{\rm e}^{-T})=0 D(w)=(1+a+e−T)w2+(2−2e−T)w+(1−a+e−T)=0
使系统稳定的充要条件为:
1+a+e−T>0,2−2e−T>0,1−a+e−T>01+a+{\rm e}^{-T}>0,2-2{\rm e}^{-T}>0,1-a+{\rm e}^{-T}>0 1+a+e−T>0,2−2e−T>0,1−a+e−T>0
应有
−1−e−T 代入aaa表达式,可得:
0
求满足误差界要求的KKK值。
因静态速度误差系数为:
Kv=limz→1(z−1)G(z)=limz→1(z−1)Kz(1−e−T)(z−1)(z−e−T)=KK_v=\lim_{z\to1}(z-1)G(z)=\lim_{z\to1}(z-1)\frac{Kz(1-{\rm e}^{-T})}{(z-1)(z-{\rm e}^{-T})}=K Kv=z→1lim(z−1)G(z)=z→1lim(z−1)(z−1)(z−e−T)Kz(1−e−T)=K
稳态误差为:
ess(∞)=TKv=TK≤ϵ⇒K≥Tϵe_{ss}(\infty)=\frac{T}{K_v}=\frac{T}{K}≤\epsilon\Rightarrow{K≥}\frac{T}{\epsilon} ess(∞)=KvT=KT≤ϵ⇒K≥ϵT
因而,满足题意要求的增益范围为:
Tϵ≤K<2(1+e−T)1−e−T\frac{T}{\epsilon}≤K<\frac{2(1+{\rm e}^{-T})}{1-{\rm e}^{-T}} ϵT≤K<1−e−T2(1+e−T)
已知采样系统结构图如下图所示,其中:T=1,a=ln2,b=ln4,K>0T=1,a=\ln2,b=\ln4,K>0T=1,a=ln2,b=ln4,K>0。要求:
解:
稳定性分析。
开环传递函数为:
G(s)=K(s+a)(s+b)=Kb−a(1s+a−1s+b)G(s)=\frac{K}{(s+a)(s+b)}=\frac{K}{b-a}\left(\frac{1}{s+a}-\frac{1}{s+b}\right) G(s)=(s+a)(s+b)K=b−aK(s+a1−s+b1)
开环脉冲传递函数为:
G(z)=Kb−a(zz−e−aT−zz−e−bT)=Kb−az(e−aT−e−bT)(z−e−aT)(z−e−bT)G(z)=\frac{K}{b-a}\left(\frac{z}{z-{\rm e}^{-aT}}-\frac{z}{z-{\rm e}^{-bT}}\right)=\frac{K}{b-a}\frac{z({\rm e}^{-aT}-{\rm e}^{-bT})}{(z-{\rm e}^{-aT})(z-{\rm e}^{-bT})} G(z)=b−aK(z−e−aTz−z−e−bTz)=b−aK(z−e−aT)(z−e−bT)z(e−aT−e−bT)
代入T=1,a=ln2,b=ln4T=1,a=\ln2,b=\ln4T=1,a=ln2,b=ln4,有:
b−a=ln4−ln2=ln2,e−aT=e−ln2=12,e−aT=e−ln4=14,e−aT−e−bT=14b-a=\ln4-\ln2=\ln2,{\rm e}^{-aT}={\rm e}^{-\ln2}=\frac{1}{2},{\rm e}^{-aT}={\rm e}^{-\ln4}=\frac{1}{4},{\rm e}^{-aT}-{\rm e}^{-bT}=\frac{1}{4} b−a=ln4−ln2=ln2,e−aT=e−ln2=21,e−aT=e−ln4=41,e−aT−e−bT=41
可得:
G(z)=K4ln2⋅z(z−12)(z−14)G(z)=\frac{K}{4\ln2}·\frac{z}{\left(z-\displaystyle\frac{1}{2}\right)\left(z-\displaystyle\frac{1}{4}\right)} G(z)=4ln2K⋅(z−21)(z−41)z
闭环特征方程为:
D(z)=(z−12)(z−14)+K4ln2z=0⇒D(z)=z2+(K4ln2−34)z+18=0D(z)=\left(z-\displaystyle\frac{1}{2}\right)\left(z-\displaystyle\frac{1}{4}\right)+\frac{K}{4\ln2}z=0\Rightarrow{D(z)}=z^2+\left(\frac{K}{4\ln2}-\frac{3}{4}\right)z+\frac{1}{8}=0 D(z)=(z−21)(z−41)+4ln2Kz=0⇒D(z)=z2+(4ln2K−43)z+81=0
令z=w+1w−1z=\displaystyle\frac{w+1}{w-1}z=w−1w+1,代入特征方程可得:
D(w)=(K4ln2+38)w2+74w+(158−K4ln2)=0D(w)=\left(\frac{K}{4\ln2}+\frac{3}{8}\right)w^2+\frac{7}{4}w+\left(\frac{15}{8}-\frac{K}{4\ln2}\right)=0 D(w)=(4ln2K+83)w2+47w+(815−4ln2K)=0
闭环系统稳定的充要条件为:
K4ln2+38>0,158−K4ln2>0⇒0
求稳态误差。
由
r(t)=1(t)⇒R(z)=zz−1r(t)=1(t)\Rightarrow{R(z)}=\frac{z}{z-1} r(t)=1(t)⇒R(z)=z−1z
故误差zzz变换为:
E(z)=1G(z)R(z)=z(z−12)(z−14)[(z−12)(z−14)+K4ln2z](z−1)E(z)=\frac{1}{G(z)}R(z)=\frac{z\left(z-\displaystyle\frac{1}{2}\right)\left(z-\displaystyle\frac{1}{4}\right)}{\left[\left(z-\displaystyle\frac{1}{2}\right)\left(z-\displaystyle\frac{1}{4}\right)+\displaystyle\frac{K}{4\ln2}z\right](z-1)} E(z)=G(z)1R(z)=[(z−21)(z−41)+4ln2Kz](z−1)z(z−21)(z−41)
由终值定理可得,稳态误差为:
ess(∞)=limz→1(z−1)E(z)=limz→1z(z−12)(z−14)[(z−12)(z−14)+K4ln2z]=33+2Kln2=33+2.89Ke_{ss}(\infty)=\lim_{z\to1}(z-1)E(z)=\lim_{z\to1}\frac{z\left(z-\displaystyle\frac{1}{2}\right)\left(z-\displaystyle\frac{1}{4}\right)}{\left[\left(z-\displaystyle\frac{1}{2}\right)\left(z-\displaystyle\frac{1}{4}\right)+\displaystyle\frac{K}{4\ln2}z\right]}=\frac{3}{3+\displaystyle\frac{2K}{\ln2}}=\frac{3}{3+2.89K} ess(∞)=z→1lim(z−1)E(z)=z→1lim[(z−21)(z−41)+4ln2Kz]z(z−21)(z−41)=3+ln22K3=3+2.89K3
其中,KKK的范围为:0