给你一个长度为n的数组
a[i]
,你需要构造一个长度为n
的数组b[i]
,对于1<=i<=n
,要满足a[i] = gcd(b[1], b[2]...,b[i])
,1<=b[i]<=m
,问存在多少种不同的方法,对998244353
取模
分析一下,对于每个
i
,必须满足a[i]%a[i-1]=0
,否则答案就是0对于
b[i]
,由于a[i-1]=gcd(b[1],b[2],...,b[i-1])
我们其实只需要满足gcd(a[i-1], b[i])=a[i]
即可我们假设a[i-1] = k*a[i]
,b[i]=a[i]*p
,则我们只需要满足gcd(k,p) = 1
即可,所以我们只需要知道 1−ma[i]1-\frac{m}{a[i]}1−a[i]m中与 a[i−1]a[i]\frac{a[i-1]}{a[i]}a[i]a[i−1]互质的数字的数量就行这就是一个容斥的板子,先质因数分解以后,再二进制枚举子集进行容斥
#include
using namespace std;#define endl '\n'
#define inf 0x3f3f3f3f
#define mod7 1000000007
#define mod9 998244353
#define m_p(a,b) make_pair(a, b)
#define mem(a,b) memset((a),(b),sizeof(a))
#define io ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
typedef long long ll;
typedef pair pii;
#define int long long
#define MAX 300000 + 50
int n, m, k, x;
int tr[MAX];vector pme;
ll count_prime(ll n,ll x){pme.clear();for(ll i=2;i<=sqrt(x);++i){if(x%i==0){pme.push_back(i);while(x%i==0) x/=i;}}if(x>1) pme.push_back(x);ll sum=0;for(int i=1;i<(1<ll z=1,num=0;for(int j=0;j>j&1) {z*=pme[j];++num;}if(num&1) sum+=n/z;else sum-=n/z;}return n-sum;
}void work(){cin >> n >> m;for(int i = 1; i <= n; ++i){cin >> tr[i];}ll ans = 1;for(int i = 2; i <= n; ++i){if(tr[i-1] % tr[i] != 0){cout << 0 << endl;return;}(ans *= count_prime(m/tr[i], tr[i-1]/tr[i]))%=mod9;}cout << ans << endl;
}signed main(){io;int t;cin>>t;while(t--)work();return 0;
}
(擦线水到两个ton币,好耶