CMSC5707-高级人工智能之自编码器Auto-encoders
创始人
2024-03-31 22:24:30
0

这章讲述模型框架和概念的时间较多,好像并没有涉及过多的运算,重在一些概念的理解。

Traditional Autoencoder

传统的自编码器常用来进行图像去噪的任务,需要了解其模型架构和流程。

自编码器由两部分组成:从Noisy Input到Z称为编码器,从Z到De-noised Output称为解码器。Input和Output有着相同的维度。
请添加图片描述
自编码器的最终目的是让X的重建误差最小,这样子能保证输入和输出尽可能地相似。
请添加图片描述
Auto-encoder的训练是一个无监督学习的过程,因为并不需要标记的数据训练。流程如下所示,它将纯净的图像+噪声整体放入encoder input,同时将纯净的图像放入decoder output,将forward processing得出的图像与纯净图像算出误差进行backpropagation训练。
请添加图片描述

Variational Autoencoder

Variational Autoencoder会从输入的图像中学习概率分布的参数,然后通过这些参数来产生新的图像。通过输入的图像X学到概率分布的变量μ\muμ和σ\sigmaσ,潜在参数ZZZ的Sample从该概率分布中随机取样得到,接着放入Decoder进行重建。
请添加图片描述
其训练过程同Auto-encoder一致,在去噪任务中,将噪声图像放入input,纯净图像放入output,通过反向传播进行训练,其中的关键在于反向传播过程中损失Loss的定义,损失的定义中有两项。

先对相关参数进行定义,
qθ(en)(z∣xi)q_{\theta(en)}(z|x_i)qθ(en)​(z∣xi​) 表示接受输入数据xix_ixi​,返回潜在变量ZZZ(ZZZ是由μ\muμ和σ\sigmaσ随机产生的),可以从ZZZ中进行Sampling,θ(en)\theta(en)θ(en)代表encoder的weights和bias。

Pϕ(de)(x^i∣z)P_{\phi(de)}(\hat x_i |z)Pϕ(de)​(x^i​∣z)接受潜在变量ZZZ产生的Sample,得到输出为X^\hat{X}X^,ϕ(de)\phi(de)ϕ(de)代表decoder的weights和bias。

重建的损失li(θ,ϕ)=−Exi∈X[Ez∈Q[logPϕ(de)(x^i∣z)]]l_i(\theta,\phi)=-E_{x_i \in X} \big[E_{z \in Q}[log P_{\phi (de)}(\hat x_i | z)]\big]li​(θ,ϕ)=−Exi​∈X​[Ez∈Q​[logPϕ(de)​(x^i​∣z)]]需要尽可能地小。由于PPP为高斯分布,因此可以对上式重写为=1N∑xi∈X(12σxi^∣z2(xi−μxi^∣z)2)\frac{1}{N}\sum\limits_{x_i \in X}\Big( \frac{1}{2 \sigma^2_{\hat {x_i}|z}}(x_i - \mu_{\hat{x_i}|z})^2\Big)N1​xi​∈X∑​(2σxi​^​∣z2​1​(xi​−μxi​^​∣z​)2).

请添加图片描述

Kullback–Leibler divergence

但是会存在的问题是,同样li(θ,ϕ)l_i(\theta,\phi)li​(θ,ϕ)较小,qθ(en)(z∣xi)q_{\theta(en)}(z|x_i)qθ(en)​(z∣xi​)和Pϕ(de)(x^i∣z)P_{\phi(de)}(\hat x_i |z)Pϕ(de)​(x^i​∣z)的差异很大,显然不是来自相同的分布。因此这里引入了Kullback–Leibler divergence 来衡量两个分布的差异程度,DKL[qθ(en)(z∣xi)∣∣(N(0,I)]D_{KL}\big[ q_{\theta(en)(z|x_i)} || ( N(0,I)\big]DKL​[qθ(en)(z∣xi​)​∣∣(N(0,I)]衡量了差生图像分布与标准高斯分布的差异。

最终该模型的Loss定义为L(all)=1N∑xi∈X(12σxi^∣z2(xi−μxi^∣z)2)+DKL[qθ(en)(z∣xi)∣∣(N(0,I)]L^{(all)}=\frac{1}{N}\sum\limits_{x_i \in X}\Big( \frac{1}{2 \sigma^2_{\hat {x_i}|z}}(x_i - \mu_{\hat{x_i}|z})^2\Big)+D_{KL}\big[ q_{\theta(en)(z|x_i)} || ( N(0,I)\big]L(all)=N1​xi​∈X∑​(2σxi​^​∣z2​1​(xi​−μxi​^​∣z​)2)+DKL​[qθ(en)(z∣xi​)​∣∣(N(0,I)],其物理意义为在局部的概率分布中,产生与输入误差最小的输出。
请添加图片描述

Reparameterization

在模型构建的过程中,潜在变量ZZZ在μ\muμ和σ\sigmaσ固定的情况下涉及了random选择sample的过程,不能通过backpropagate进行训练,因此引入了reparameterization trick. 其将原先平均值为μ\muμ,标准差为σ\sigmaσ的高斯分布,表示为Z=ϵ⋅σx+μxZ= \epsilon\cdot\sigma_x +\mu_xZ=ϵ⋅σx​+μx​,其中ϵ∈N(0,1)\epsilon \in N(0,1)ϵ∈N(0,1),这样子任意的ZZZ都可以通过对N(0,1)N(0,1)N(0,1)的缩放表示出来。
请添加图片描述
该方法让原先随机化的过程确定化,从而能够进行backpropagation.

请添加图片描述

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
客厅放八骏马摆件可以吗(家里摆... 今天给各位分享客厅放八骏马摆件可以吗的知识,其中也会对家里摆八骏马摆件好吗进行解释,如果能碰巧解决你...
苏州离哪个飞机场近(苏州离哪个... 本篇文章极速百科小编给大家谈谈苏州离哪个飞机场近,以及苏州离哪个飞机场近点对应的知识点,希望对各位有...