python数学建模--线性规划问题案例及求解
创始人
2024-03-30 09:12:35
0

目录

  • 数学问题:线性规划问题
    • 程序设计
    • 结果分析
  • 实际应用1:加工厂的生产计划
    • 设置未知数
    • 建立数学模型
    • 程序设计
    • 结果分析
  • 实际应用2:油料加工厂的采购和加工计划
    • 设置未知数
    • 建立数学模型
    • 程序设计
    • 结果分析
  • 遗留的问题
    • 钢管加工用料问题
    • 分析
    • scipy.optimize.linprog()的缺陷?

本博客参考:

  1. 《python数学实验与建模》
  2. 《MATLAB数学建模经典案例实战》

数学问题:线性规划问题

maxz=8x1−2x2+3x3−x4−2x5{x1+x2+x3+x4+x5≤400x1+2x2+2x3+x4+6x5≤8002x1+x2+6x3≤200x3+x4+55≤2000≤xi≤99,i=1,2,3,4x5≥−10max \ z=8x_1-2x_2+3x_3-x_4-2x_5\\ \left\{ \begin{aligned} &x_1+x_2+x_3+x_4+x_5\leq 400\\ & x_1+2x_2+2x_3+x_4+6x_5\leq800\\ &2x_1+x_2+6x_3\leq200\\ &x_3+x_4+5_5\leq200\\ &0\leq x_i\leq99,i=1,2,3,4\\ &x_5\geq-10\\ \end{aligned} \right. max z=8x1​−2x2​+3x3​−x4​−2x5​⎩⎧​​x1​+x2​+x3​+x4​+x5​≤400x1​+2x2​+2x3​+x4​+6x5​≤8002x1​+x2​+6x3​≤200x3​+x4​+55​≤2000≤xi​≤99,i=1,2,3,4x5​≥−10​

程序设计

from scipy.optimize import linprogc=[-8,2,-3,1,2]
A=[[1,1,1,1,1],[1,2,2,1,6],[2,1,6,0,0],[0,0,1,1,5]]
b=[[400],[800],[200],[200]]
aeq=None
beq=None
bounds=((0, 99),(0, 99),(0, 99),(0, 99),(-10,None))
res=linprog(c=c, A_ub=A, b_ub=b, A_eq=aeq, b_eq=beq, bounds=bounds,)

运行结果

在这里插入图片描述

结果分析

从中我们看出,目标函数z的最大值应为823左右,此时决策变量x1−x5x_1-x_5x1​−x5​的值分别为[99,0,0.3,0,-10]

实际应用1:加工厂的生产计划

一家加工厂使用牛奶生产A,B两种奶制品,1桶牛奶经甲机器加工12小时得到3kgA,也可以经过乙机器8小时得到4kgB,根据市场需求,生产的A、B可以全部出售并且每kgA获利24元、每kgB获利16元。现在该工厂每天获得50桶牛奶供应,所有工人的最大劳动时间之和为480x小时,甲机器每天最多加工100kgA,乙机器加工不限量,请你为该工厂设计生产计划,使得每天的利润最大

设置未知数

假设每天用于生产A产品的牛奶为x1x_1x1​桶,用于生产B产品的牛奶为x2x_2x2​桶,每天的利润为zzz元,根据题意建立数学模型

建立数学模型

maxz=3∗24x1+4∗16x2{x1+x2≤5012x1+8x2≤8003x1≤100x1≥0,x2≥0max \ z=3*24x_1+4*16x_2\\ \left\{ \begin{aligned} x_1+x_2\leq 50\\ 12x_1+8x_2\leq800\\ 3x_1\leq100\\ x_1\geq0,x_2\geq0 \end{aligned} \right. max z=3∗24x1​+4∗16x2​⎩⎧​x1​+x2​≤5012x1​+8x2​≤8003x1​≤100x1​≥0,x2​≥0​
转化为标准形式
minz=−3∗24x1−4∗16x2{x1+x2≤5012x1+8x2≤8003x1≤100x1≥0,x2≥0min \ z=-3*24x_1-4*16x_2\\ \left\{ \begin{aligned} x_1+x_2\leq 50\\ 12x_1+8x_2\leq800\\ 3x_1\leq100\\ x_1\geq0,x_2\geq0 \end{aligned} \right. min z=−3∗24x1​−4∗16x2​⎩⎧​x1​+x2​≤5012x1​+8x2​≤8003x1​≤100x1​≥0,x2​≥0​

程序设计

from scipy.optimize import linprog
c=[-72,-64]
A=[[1,1],[12,8]]
b=[[50],[480]]
bounds=((0,100/3.0),(0,None))res=linprog(c=c, A_ub=A, b_ub=b, A_eq=None, b_eq=None, bounds=bounds) 

运行结果
在这里插入图片描述

结果分析

从上面我们可以看出,利润最大值在3360元左右,达到最大值时,A、B产品的牛奶日用量分别是20桶、30桶

实际应用2:油料加工厂的采购和加工计划

某加工厂加工一种油,原料为五种油(植物油1,植物油2、非植物油1,非植物油2、非植物油3),每种油的价格、硬度如图表所示,最终生产的成品将以150英镑/吨

植物油1植物油2非植物油1非植物油2非植物油3
进货价格110120130110115
硬度值8.86.12.04.25.0

每个月能够提炼的植物油不超过200吨、非植物油不超过250吨,假设提炼过程中油料没有损失,提炼费用忽略不计,并且最终的产品的硬度需要在(3-6)之间(假设硬度的混合时线性的)。根据以上信息,请你为加工厂指定月采购和加工计划

设置未知数

假设x1,x2,x3,x4,x5x_1,x_2,x_3,x_4,x_5x1​,x2​,x3​,x4​,x5​分别为每月需要采购的原料油吨数,x6x_6x6​为每个月加工的成品油吨数,根据题意建立数学模型

建立数学模型

maxz=−110x1−120x2−130x3−110x4−115x5+150x6{x1+x2≤200x3+x4+x5≤2508.8x1+6.1x2+2.0x3+4.2x4+5.0x5≤6x68.8x1+6.1x2+2.0x3+4.2x4+5.0x5≥3x6x1+x2+x3+x4+x5=x6xi≥0,i=1,2,3,...,6max \ z=-110x_1-120x_2-130x_3-110x_4-115x_5+150x_6\\ \left\{ \begin{aligned} x_1+x_2\leq 200\\ x_3+x_4+x_5\leq250\\ 8.8x_1+6.1x_2+2.0x_3+4.2x_4+5.0x_5\leq6x_6\\ 8.8x_1+6.1x_2+2.0x_3+4.2x_4+5.0x_5\geq3x_6\\ x_1+x_2+x_3+x_4+x_5=x_6\\ x_i\geq0,i=1,2,3,...,6 \end{aligned} \right. max z=−110x1​−120x2​−130x3​−110x4​−115x5​+150x6​⎩⎧​x1​+x2​≤200x3​+x4​+x5​≤2508.8x1​+6.1x2​+2.0x3​+4.2x4​+5.0x5​≤6x6​8.8x1​+6.1x2​+2.0x3​+4.2x4​+5.0x5​≥3x6​x1​+x2​+x3​+x4​+x5​=x6​xi​≥0,i=1,2,3,...,6​

程序设计

from scipy.optimize import linprogc=[110,120,130,110,115,-150]
A=[[1,1,0,0,0,0],[0,0,1,1,1,0],[8.8,6.1,2.0,4.2,5.0,-6],[-8.8,-6.1,-2.0,-4.2,-5.0,3]]
b=[[200],[250],[0],[0]]
aeq=[[1,1,1,1,1,-1]]
beq=[[0]]
bounds=((0, None),(0, None),(0, None),(0, None),(0,None),(0,450))
# bounds=((0, None),(0, None),(0, None),(0, None),(0,None),(0,None))
res=linprog(c=c, A_ub=A, b_ub=b, A_eq=aeq, b_eq=beq, bounds=bounds)

运行结果
在这里插入图片描述

结果分析

从上面我们可以看到,五种原料油的采购量分别为[159.25,40.7407,0,250,0](吨),此时总利润可以达到最大,约为17592英镑/月

笔者发现的一个没有用的小技巧:我们知道x6x_6x6​变量代表的是每个月的吨数,bounds参数设置决策变量的取值区间,当在bounds中对x_6的上界不加限制时,即(0,None),模型返回的结果中仍然将x6x_6x6​收敛至450,你知道这是为什么吗?

遗留的问题

经过这么多的应用,我们已经大致明白了scipy.optimize.linprog()函数的使用过程,也惊叹于它的便利之处,但是不知道你是否能发现该函数的缺点?
我们来看下面一个问题

钢管加工用料问题

某零售商从钢管厂进货后将钢管切割后卖给客户,某次进货该零售商得到了若干1850mm长的原料钢管。现有一客户需要15根290mm、28根315mm、21根350mm、30根455mm的钢管。对于一个原料钢管有四种切割模式,每次切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品),为减少余料浪费,每种切割模式下的余料浪费不能超过100mm。(要完成该客户的需求,需要若干根原料钢管,可能用到四种切割模式,现规定使用频率最多的切割模式按照一根原料钢管价格的1/10收取加工费,使用频率次之的切割模式按照一根原料钢管价格的2/10收取加工费,依次类推)。现在求使得该零售商总费用最小的切割计划?

分析

仔细分析我们会发现,这个问题的线性规划和上面的两个实际问题有很大不同。

在上面的问题中,决策变量只有一种x1−xnx_1-x_nx1​−xn​,而且决策变量的系数的都是常数(比如x3+x4+x5≤250x_3+x_4+x_5\leq250x3​+x4​+x5​≤250中的每个自变量系数都是1)。但是在该问题中似乎有两种决策变量:切割模式的使用频次xix_ixi​、每种切割模式下对于一根原料钢管产生的成品钢管种类及数量rijr_{ij}rij​(i表示第i种切割模式,j表示第j种成品钢管)。

scipy.optimize.linprog()的缺陷?

这就让我们在列举约束条件时遇到了很大的困难,比如其中一个不等式是这样的∑i=14xi×r1i≥15(i=1...4)\sum^4_{i=1}x_i\times r_{1i}\geq15(i=1...4)∑i=14​xi​×r1i​≥15(i=1...4),看到这里我们发现两个决策变量相乘,如果继续使用scipy.optimize.linprog()函数,参数A_ub怎么取?参数bounds到底该以谁作为决策变量?

现在我们似乎遇到了困难,实际上并不是linprog()函数的问题,因为函数就是用来求解线性规划问题的,而我们现在提出的这个问题是一个非线性规划问题,所以,要解决它我们需要“另辟蹊径”了!下一个博客我们将用另外一个第三方库解决这个问题

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
客厅放八骏马摆件可以吗(家里摆... 今天给各位分享客厅放八骏马摆件可以吗的知识,其中也会对家里摆八骏马摆件好吗进行解释,如果能碰巧解决你...
苏州离哪个飞机场近(苏州离哪个... 本篇文章极速百科小编给大家谈谈苏州离哪个飞机场近,以及苏州离哪个飞机场近点对应的知识点,希望对各位有...