目录
一、概念
二、常见操作
2.1 查找操作
2.2 插入操作
2.3 删除操作
三、模型应用
3.1 K模型
3.2 KV模型
3.3 代码完整实现
四、 性能分析
二叉搜索树(BST,Binary Search Tree),也称二叉排序树或二叉查找树
它或者是一棵空树,或者是具有以下性质的二叉树:
1. 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
2. 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
3. 它的左右子树也分别为二叉搜索树
4. 不允许键值冗余
规则: a、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
b、最多查找高度次,若走到到空还没找到,则这个值不存在
非递归
bool find(const K& key) {BSTNode* cur = _root;while (cur != nullptr) {if (cur->_key > key) {cur = cur->_left;}else if (cur->_key < key) {cur = cur->_right;}else {//cur->_key == keyreturn true;}}return false;
}
递归
bool _find(BSTNode* root, const K& key) {if (root == nullptr) return false;else if (root->_key > key) return _find(root->_left, key);else if (root->_key < key) return _find(root->_right, key);else return true;//root->_key == key
}bool find(const K& key) {return _find(_root, key);
}
规则: a. 树为空,则直接新增节点,赋值给root指针
b. 树不空,按二叉搜索树性质查找插入位置,插入新节点
非递归
bool insert(const K& key) {//树为空,则直接新增节点,赋值给root指针if (_root == nullptr) {_root = new BSTNode(key);return true;}//树不空,按二叉搜索树性质查找插入位置BSTNode* cur = _root, * parent = nullptr;while (cur != nullptr) {if (cur->_key > key) {parent = cur;cur = cur->_left;}else if (cur->_key < key) {parent = cur;cur = cur->_right;}else {//cur->_key == keyreturn false;//不允许键值冗余,插入失败}}//插入新节点cur = new BSTNode(key);if (parent->_key > key) parent->_left = cur;else parent->_right = cur;return true;
}
递归
//root为上一层左指针(右指针)的别名,直接赋值即可
bool _insert(BSTNode*& root, const K& key) {if (root == nullptr) {root = new BSTNode(key);return true;}else if (root->_key > key) return _insert(root->_left, key);else if (root->_key < key) return _insert(root->_right, key);else return false;
}bool insert(const K& key) {return _insert(_root, key);
}
删除这个操作具有一定难度,为了使树在完成结点的删除后依然保持二叉树搜索树的性质,必须分情况进行处理。
(1)若删除的是叶结点,则直接删除
(2)若删除的结点只有一株左子树或右子树,则直接将该子树移到被删结点位置
(3)若删除的结点有两株子树,则使用替换法进行删除。在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值与待删除结点的值进行交换,再来处理该结点的删除问题
非递归
bool erase(const K& key) {BSTNode* cur = _root, * parent = nullptr;while (cur != nullptr) {if (cur->_key > key) {parent = cur;cur = cur->_left;}else if (cur->_key < key) {parent = cur;cur = cur->_right;}else {//cur->_key == key,找到待删除结点,开始删除//待删除结点的左子树为空 或 待删除结点左右子树都为空if (cur->_left == nullptr) {if (cur == _root) {_root = cur->_right;}else {if (cur == parent->_left) {parent->_left = cur->_right;}if (cur == parent->_right) {parent->_right = cur->_right;}}delete cur;cur = nullptr;}//待删除结点的右子树为空else if (cur->_right == nullptr) {if (cur == _root) {_root = cur->_left;}else {if (cur == parent->_left) {parent->_left = cur->_left;}if (cur == parent->_right) {parent->_right = cur->_left;}}delete cur;cur = nullptr;}//左右都不为nullptr,使用替换法else {//找到待删除结点右子树的最小结点和其父结点BSTNode* replace = cur->_right, * min_parent = cur;while (replace->_left != nullptr) {min_parent = replace;replace = replace->_left;}//将最小结点的值与待删除结点的值进行交换swap(replace->_key, cur->_key);//最小结点不可能有左子树,接上右子树即可if (min_parent->_left == replace) {min_parent->_left = replace->_right;}else {min_parent->_right = replace->_right;}delete replace;}return true;}}return false;
}
递归
bool _erase(BSTNode*& root, const K& key) {if (root == nullptr) return false;else if (root->_key > key) return _erase(root->_left, key);else if (root->_key < key) return _erase(root->_right, key);else {//找到待删除结点BSTNode* del = root;//待删除结点的左子树为空或左右子树都为空if (root->_left == nullptr) {root = root->_right;}//待删除结点的右子树为空else if (root->_right == nullptr) {root = root->_left;}//左右都不为空else {//找到带删除结点右子树的最小结点BSTNode* replace = root->_right;while (replace->_left != nullptr) {replace = replace->_left;}//交换值swap(replace->_key, root->_key);return _erase(root->_right, key);//不可写成erase(key),因为重新查找不到//此时二叉搜索树的存储性质已被破坏,但待删除结点的右子树依然保持二叉搜索树的性质}delete del;return true;}
}bool erase(const K& key) {return _erase(_root, key);
}
K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值
比如: 给一个单词word,判断该单词是否拼写正确,具体方式如下:以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。
每一个关键码key,都有与之对应的值value,即
比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文
再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出现次数就是
k模型
#define RECURSION
#include
#include
using std::swap;
using std::cout;
using std::endl;
namespace KEY
{templatestruct BinarySearchTreeNode{BinarySearchTreeNode(const K& key = K()) : _left(nullptr), _right(nullptr), _key(key) {}BinarySearchTreeNode* _left;BinarySearchTreeNode* _right;K _key;};templateclass BinarySearchTree{typedef BinarySearchTreeNode BSTNode;public:BinarySearchTree() = default;//C++11: 强制编译器生成默认构造BinarySearchTree(const BinarySearchTree& obj) {_root = _copy(obj._root);}~BinarySearchTree() {_destory(_root);}BinarySearchTree& operator=(BinarySearchTree obj) {swap(_root, obj._root);return *this;}bool insert(const K& key) {
#ifdef RECURSIONreturn _insert(_root, key);
#elseif (_root == nullptr) {_root = new BSTNode(key);return true;}BSTNode* cur = _root, * parent = nullptr;while (cur != nullptr) {if (cur->_key > key) {parent = cur;cur = cur->_left;}else if (cur->_key < key) {parent = cur;cur = cur->_right;}else {//cur->_key == keyreturn false;}}cur = new BSTNode(key);if (parent->_key > key) parent->_left = cur;else parent->_right = cur;return true;
#endif}bool erase(const K& key) {
#ifdef RECURSIONreturn _erase(_root, key);
#elseBSTNode* cur = _root, * parent = nullptr;while (cur != nullptr) {if (cur->_key > key) {parent = cur;cur = cur->_left;}else if (cur->_key < key) {parent = cur;cur = cur->_right;}else {//cur->_key == keyif (cur->_left == nullptr) {if (cur == _root) {_root = cur->_right;}else {if (cur == parent->_left) {parent->_left = cur->_right;}if (cur == parent->_right) {parent->_right = cur->_right;}}delete cur;cur = nullptr;}else if (cur->_right == nullptr) {if (cur == _root) {_root = cur->_left;}else {if (cur == parent->_left) {parent->_left = cur->_left;}if (cur == parent->_right) {parent->_right = cur->_left;}}delete cur;cur = nullptr;}else {BSTNode* replace = cur->_right, * min_parent = cur;while (replace->_left != nullptr) {min_parent = replace;replace = replace->_left;}swap(replace->_key, cur->_key);if (min_parent->_left == replace) {min_parent->_left = replace->_right;}else {min_parent->_right = replace->_right;}delete replace;}return true;}}return false;
#endif }bool find(const K& key) {
#ifdef RECURSIONreturn _find(_root, key);
#elseBSTNode* cur = _root;while (cur != nullptr) {if (cur->_key > key) {cur = cur->_left;}else if (cur->_key < key) {cur = cur->_right;}else {//cur->_key == keyreturn true;}}return false;
#endif}void inorder() {_inorder(_root);}private:BSTNode* _copy(BSTNode* root) {if (root == nullptr) return nullptr;BSTNode* copy_root = new BSTNode(root->_key);copy_root->_left = _copy(root->_left);copy_root->_right = _copy(root->_right);return copy_root;}bool _insert(BSTNode*& root, const K& key) {//root为上一层左指针(右指针)的别名,直接赋值即可if (root == nullptr) {root = new BSTNode(key);return true;}else if (root->_key > key) return _insert(root->_left, key);else if (root->_key < key) return _insert(root->_right, key);else return false;}bool _erase(BSTNode*& root, const K& key) {if (root == nullptr) return false;else if (root->_key > key) return _erase(root->_left, key);else if (root->_key < key) return _erase(root->_right, key);else {BSTNode* del = root;if (root->_left == nullptr) {root = root->_right;}else if (root->_right == nullptr) {root = root->_left;}else {//左右都不为空BSTNode* replace = root->_right;while (replace->_left != nullptr) {replace = replace->_left;}swap(replace->_key, root->_key);return _erase(root->_right, key);}delete del;return true;}}bool _find(BSTNode* root, const K& key) {if (root == nullptr) return false;else if (root->_key > key) return _find(root->_left, key);else if (root->_key < key) return _find(root->_right, key);else return true;//root->_key == key}void _inorder(BSTNode* root) {if (root == nullptr) {return;}_inorder(root->_left);cout << root->_key << " ";_inorder(root->_right);}void _destory(BSTNode*& root) {if (root == nullptr) {return;}_destory(root->_left);_destory(root->_right);delete root;root = nullptr;}private:BSTNode* _root = nullptr;};
}
KV模型
namespace KEY_VALUE
{templatestruct BinarySearchTreeNode{BinarySearchTreeNode(const K& key = K(), const V& value = V()) : _left(nullptr), _right(nullptr), _key(key), _value(value) {}BinarySearchTreeNode* _left;BinarySearchTreeNode* _right;K _key;V _value;};templateclass BinarySearchTree{typedef BinarySearchTreeNode BSTNode;public:bool insert(const K& key,const V& value) {if (_root == nullptr) {_root = new BSTNode(key,value);return true;}BSTNode* cur = _root, * parent = nullptr;while (cur != nullptr) {if (cur->_key > key) {parent = cur;cur = cur->_left;}else if (cur->_key < key) {parent = cur;cur = cur->_right;}else {//cur->_key == keyreturn false;//不允许键值冗余,插入失败}}cur = new BSTNode(key,value);if (parent->_key > key) parent->_left = cur;else parent->_right = cur;return true;}BSTNode* find(const K& key) {BSTNode* cur = _root;while (cur != nullptr) {if (cur->_key > key) {cur = cur->_left;}else if (cur->_key < key) {cur = cur->_right;}else {//cur->_key == keyreturn cur;}}return nullptr;}void inorder() {_inorder(_root);}private:void _inorder(BSTNode* root) {if (root == nullptr) {return;}_inorder(root->_left);cout << root->_key << ":" << root->_value << " ";_inorder(root->_right);}private:BSTNode* _root = nullptr;};
}
插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能
对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树
最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为: log_2 N
最差情况下,二叉搜索树退化为单支树(或者类似单支),若插入顺序有序即会出现单支的情况
问题:
若退化成单支树,二叉搜索树的性能就失去了。
那能否进行改进,不论按照什么次序插入关键码,二叉搜索树的性能都能达到最优?
使用AVL树和红黑树