Principal branch
创始人
2024-02-16 01:07:24
0

In mathematics, a principal branch is a function which selects one branch (“slice”) of a multi-valued function. Most often, this applies to functions defined on the complex plane.

Contents

  • 1 Examples
    • 1.1 Trigonometric inverses
    • 1.2 Exponentiation to fractional powers
    • 1.3 Complex logarithms
  • 2 See also

1 Examples

在这里插入图片描述

Principal branch of arg(z)

1.1 Trigonometric inverses

Principal branches are used in the definition of many inverse trigonometric functions, such as the selection either to define that

{\displaystyle \arcsin :[-1,+1]\rightarrow \left[-{\frac {\pi }{2}},{\frac {\pi }{2}}\right]}{\displaystyle \arcsin :[-1,+1]\rightarrow \left[-{\frac {\pi }{2}},{\frac {\pi }{2}}\right]}
or that

{\displaystyle \arccos :[-1,+1]\rightarrow [0,\pi ]}{\displaystyle \arccos :[-1,+1]\rightarrow [0,\pi ]}.

1.2 Exponentiation to fractional powers

A more familiar principal branch function, limited to real numbers, is that of a positive real number raised to the power of 1/2.

For example, take the relation y = x1/2, where x is any positive real number.

This relation can be satisfied by any value of y equal to a square root of x (either positive or negative). By convention, √x is used to denote the positive square root of x.

In this instance, the positive square root function is taken as the principal branch of the multi-valued relation x1/2.

1.3 Complex logarithms

One way to view a principal branch is to look specifically at the exponential function, and the logarithm, as it is defined in complex analysis.

The exponential function is single-valued, where ez is defined as:

{\displaystyle e{z}=e{a}\cos b+ie^{a}\sin b}e{z}=e{a}\cos b+ie^{a}\sin b
where {\displaystyle z=a+ib}z=a+ib.

However, the periodic nature of the trigonometric functions involved makes it clear that the logarithm is not so uniquely determined. One way to see this is to look at the following:

{\displaystyle \operatorname {Re} (\log z)=\log {\sqrt {a{2}+b{2}}}}\operatorname {Re} (\log z)=\log {\sqrt {a{2}+b{2}}}
and

{\displaystyle \operatorname {Im} (\log z)=\operatorname {atan2} (b,a)+2\pi k}\operatorname {Im} (\log z)=\operatorname {atan2} (b,a)+2\pi k
where k is any integer and atan2 continues the values of the arctan(b/a)-function from their principal value range {\displaystyle (-\pi /2,;\pi /2]}{\displaystyle (-\pi /2,;\pi /2]}, corresponding to {\displaystyle a>0}a>0 into the principal value range of the arg(z)-function {\displaystyle (-\pi ,;\pi ]}{\displaystyle (-\pi ,;\pi ]}, covering all four quadrants in the complex plane.

Any number log z defined by such criteria has the property that elog z = z.

In this manner log function is a multi-valued function (often referred to as a “multifunction” in the context of complex analysis). A branch cut, usually along the negative real axis, can limit the imaginary part so it lies between −π and π. These are the chosen principal values.

This is the principal branch of the log function. Often it is defined using a capital letter, Log z.

2 See also

Branch point
Branch cut
Complex logarithm
Riemann surface

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
苏州离哪个飞机场近(苏州离哪个... 本篇文章极速百科小编给大家谈谈苏州离哪个飞机场近,以及苏州离哪个飞机场近点对应的知识点,希望对各位有...
客厅放八骏马摆件可以吗(家里摆... 今天给各位分享客厅放八骏马摆件可以吗的知识,其中也会对家里摆八骏马摆件好吗进行解释,如果能碰巧解决你...