generate
块允许乘以模块实例或执行任何模块的条件实例化。它提供了基于 Verilog 参数构建设计的能力。当需要多次重复相同的操作或模块实例,或者必须根据给定的 Verilog 参数有条件地包含某些代码时,这些语句特别方便。
generate
块不能包含端口、参数、声明specparam
或specify
块。但是,其他模块项目和其他生成块是允许的。所有生成的实例都在module
关键字generate
和之间进行编码endgenerate
。
生成的实例化可以有模块、连续赋值always
或initial
块和用户定义的原语。有两种类型的生成结构——循环和条件。
半加器将在另一个名为my_design的顶级设计模块中使用for 循环构造实例化N次。必须使用关键字声明循环变量,该关键字告诉工具该变量将在生成块的详细说明期间专门使用。generate
genvar
// Design for a half-adder
module ha ( input a, b,output sum, cout);assign sum = a ^ b;assign cout = a & b;
endmodule// A top level design that contains N instances of half adder
module my_design#(parameter N=4)( input [N-1:0] a, b,output [N-1:0] sum, cout);// Declare a temporary loop variable to be used during// generation and won't be available during simulationgenvar i;// Generate for loop to instantiate N timesgeneratefor (i = 0; i < N; i = i + 1) beginha u0 (a[i], b[i], sum[i], cout[i]);endendgenerate
endmodule
testbench 参数用于控制设计中半加器实例的数量。当N为 2 时,my_design将有两个半加器实例。
module tb;parameter N = 2;reg [N-1:0] a, b;wire [N-1:0] sum, cout;// Instantiate top level design with N=2 so that it will have 2// separate instances of half adders and both are given two separate// inputsmy_design #(.N(N)) md( .a(a), .b(b), .sum(sum), .cout(cout));initial begina <= 0;b <= 0;$monitor ("a=0x%0h b=0x%0h sum=0x%0h cout=0x%0h", a, b, sum, cout);#10 a <= 'h2;b <= 'h3;#20 b <= 'h4;#10 a <= 'h5;end
endmodule
a[0]和b[0]给出输出sum[0]和cout[0]而a[1]和b[1]给出输出sum[1]和cout[1]。
模拟日志ncsim > 运行 a=0x0 b=0x0 sum=0x0 cout=0x0 a=0x2 b=0x3 总和=0x1 cout=0x2 a=0x2 b=0x0 sum=0x2 cout=0x0 a=0x1 b=0x0 sum=0x1 cout=0x0 ncsim: *W,RNQUIE:模拟完成。 ncsim > 退出
看到详细的 RTL 确实有两个由generate
块生成的半加器实例。
下面显示的是一个使用if else
内部generate
结构在两个不同的多路复用器实现之间进行选择的示例。第一个设计使用assign
语句来实现多路复用器,而第二个设计使用case
语句。在顶层设计模块中定义了一个名为USE_CASE的参数,用于在两个选项之间进行选择。
// Design #1: Multiplexer design uses an "assign" statement to assign
// out signal
module mux_assign ( input a, b, sel,output out);assign out = sel ? a : b;// The initial display statement is used so that// we know which design got instantiated from simulation// logsinitial$display ("mux_assign is instantiated");
endmodule// Design #2: Multiplexer design uses a "case" statement to drive
// out signal
module mux_case (input a, b, sel,output reg out);always @ (a or b or sel) begincase (sel)0 : out = a;1 : out = b;endcaseend// The initial display statement is used so that// we know which design got instantiated from simulation// logsinitial$display ("mux_case is instantiated");
endmodule// Top Level Design: Use a parameter to choose either one
module my_design ( input a, b, sel,output out);parameter USE_CASE = 0;// Use a "generate" block to instantiate either mux_case// or mux_assign using an if else construct with generategenerateif (USE_CASE)mux_case mc (.a(a), .b(b), .sel(sel), .out(out));elsemux_assign ma (.a(a), .b(b), .sel(sel), .out(out));endgenerateendmodule
Testbench 实例化顶层模块my_design并将参数USE_CASE设置为 1,以便实例化设计 usingcase
语句。
module tb;// Declare testbench variablesreg a, b, sel;wire out;integer i;// Instantiate top level design and set USE_CASE parameter to 1 so that// the design using case statement is instantiatedmy_design #(.USE_CASE(1)) u0 ( .a(a), .b(b), .sel(sel), .out(out));initial begin// Initialize testbench variablesa <= 0;b <= 0;sel <= 0;// Assign random values to DUT inputs with some delayfor (i = 0; i < 5; i = i + 1) begin#10 a <= $random;b <= $random;sel <= $random;$display ("i=%0d a=0x%0h b=0x%0h sel=0x%0h out=0x%0h", i, a, b, sel, out);endend
endmodule
当参数USE_CASE为1时,从仿真日志可以看出,multiplexer design usingcase
语句被实例化了。当USE_CASE为零时,多路复用器设计 usingassign
语句被实例化。这可以从模拟日志中打印的显示语句中看出。
// 当 USE_CASE = 1 时 ncsim > 运行 mux_case 被实例化 i=0 a=0x0 b=0x0 选择=0x0 输出=0x0 i=1 a=0x0 b=0x1 选择=0x1 输出=0x1 i=2 a=0x1 b=0x1 选择=0x1 输出=0x1 i=3 a=0x1 b=0x0 选择=0x1 输出=0x0 i=4 a=0x1 b=0x0 选择=0x1 输出=0x0 ncsim: *W,RNQUIE:模拟完成。// 当 USE_CASE = 0 时 ncsim > 运行 mux_assign 被实例化 i=0 a=0x0 b=0x0 选择=0x0 输出=0x0 i=1 a=0x0 b=0x1 选择=0x1 输出=0x0 i=2 a=0x1 b=0x1 选择=0x1 输出=0x1 i=3 a=0x1 b=0x0 选择=0x1 输出=0x1 i=4 a=0x1 b=0x0 选择=0x1 输出=0x1 ncsim: *W,RNQUIE:模拟完成。
generate case 允许模块、initial 和 always 块根据case
表达式在另一个模块中实例化,以从多个选项中选择一个。
// Design #1: Half adder
module ha (input a, b,output reg sum, cout);always @ (a or b){cout, sum} = a + b;initial$display ("Half adder instantiation");
endmodule// Design #2: Full adder
module fa (input a, b, cin,output reg sum, cout);always @ (a or b or cin){cout, sum} = a + b + cin;initial$display ("Full adder instantiation");
endmodule// Top level design: Choose between half adder and full adder
module my_adder (input a, b, cin,output sum, cout);parameter ADDER_TYPE = 1;generatecase(ADDER_TYPE)0 : ha u0 (.a(a), .b(b), .sum(sum), .cout(cout));1 : fa u1 (.a(a), .b(b), .cin(cin), .sum(sum), .cout(cout));endcaseendgenerate
endmodule
module tb;reg a, b, cin;wire sum, cout;my_adder #(.ADDER_TYPE(0)) u0 (.a(a), .b(b), .cin(cin), .sum(sum), .cout(cout));initial begina <= 0;b <= 0;cin <= 0;$monitor("a=0x%0h b=0x%0h cin=0x%0h cout=0%0h sum=0x%0h",a, b, cin, cout, sum);for (int i = 0; i < 5; i = i + 1) begin#10 a <= $random;b <= $random;cin <= $random;endend
endmodule
请注意,由于实例化了半加器,因此cin对输出sum和cout没有任何影响。
模拟日志ncsim > 运行 半加器实例化 a=0x0 b=0x0 cin=0x0 cout=00 sum=0x0 a=0x0 b=0x1 cin=0x1 cout=00 sum=0x1 a=0x1 b=0x1 cin=0x1 cout=01 sum=0x0 a=0x1 b=0x0 cin=0x1 cout=00 sum=0x1 ncsim: *W,RNQUIE:模拟完成。