–0724
还有几分钟,把burpsuite安装一下
—0804
hh当然,和室友聊天去啦hhh
java目录下找不到jdk,环境变量没法配emm,重新装一下。
emm原来这个文件夹是在安装时自己创建的
啊啊啊,我是猪emm
javasuite闪退是因为环境变量没配好~我还把新版本的java卸了,下了旧版本的,为此还注册了oracle。
具体可能通过javac测试环境变量是否配好了。
成功啦
–0858emm已经一个小时啦,快去看代码!!!
大概用两个小时,弄清model具体内容,也就是读论文中不明晰的地方
居然找不到昨天写的文档了emmm
还好问题不大,在代码里写了很多注释,直接看代码也ok
这篇比较清楚
https://www.cnblogs.com/z-x-y/p/9633212.html
需要看一下这个文件的来源,没找到,感觉是自己pick的初始technique
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MpNVhwOW-1669259809814)(E:\stup\Typora\pics\image-20221124094711525.png)]
def update_template(self, attack_graph: AttackGraph):logging.info("---technique template: Update template!---")# 总实例数+1self.total_instance_count += 1sample_node_template_node_dict = {}# node matching# 查看sample图中的node,进行匹配与更新for node in attack_graph.attackgraph_nx.nodes:max_similarity_score = 0most_similar_node_index = -1node_index = 0# 遍历template中的technique_node技术结点for template_node in self.technique_node_list:# 对每一个新的节点node,与原有图中节点template_node进行相似度比对,找到相似度最大的,记录索引和分之similarity_score = template_node.get_similarity(attack_graph.attackNode_dict[node])if similarity_score > max_similarity_score:max_similarity_score = similarity_scoremost_similar_node_index = node_indexnode_index += 1# whether node in new sample is aligned with exist template node# 如果新的node的相似度分数大于THRESHOLD,则将其加入sample_node_template_dict(单独针对每个新的template为update template创立)# 并用该节点将与其最相似的老节点更新# 具体similar算法,和更新方法?if max_similarity_score > self.NODE_SIMILAR_ACCEPT_THRESHOLD:sample_node_template_node_dict[node] = most_similar_node_indexself.technique_node_list[most_similar_node_index].update_with(attack_graph.attackNode_dict[node])else:# 如果不大于,则直接加入technique_node_list,作为新的节点tn = TemplateNode(attack_graph.attackNode_dict[node])self.technique_node_list.append(tn)# 设置indexsample_node_template_node_dict[node] = len(self.technique_node_list) - 1instance = []# 查看sample图中的edge,进行匹配与更新for edge in attack_graph.attackgraph_nx.edges:# 得到现在图里面的边,后面做的是结点index的转换(由原来图,换位现在结点匹配更新后新生成的图的index)technique_template_edge = (sample_node_template_node_dict[edge[0]], sample_node_template_node_dict[edge[1]])# 查看原来的template是否包含该边if technique_template_edge in self.technique_edge_dict.keys():self.technique_edge_dict[technique_template_edge] += 1else:self.technique_edge_dict[technique_template_edge] = 1# 将边加入到instance中,所以instance就是现有边的集合instance.append(technique_template_edge)# 统计现有边的情况,记入technique_instance_dict,初始化时和原有edge_list相同,不知后续有什么变化?instance = tuple(instance)if instance in self.technique_instance_dict.keys():self.technique_instance_dict[instance] += 1else:self.technique_instance_dict[instance] = 1
def get_similarity(self, node: AttackGraphNode) -> float: # Todosimilarity = 0.0if self.type == node.type:# 如果结点type相同,则加0.4分similarity += 0.4# 对比ioc和nlp(实体名称)部分的相似度,取最大值similarity += max(get_stringSet_similarity(self.ioc, node.ioc), get_stringSet_similarity(self.nlp, node.nlp))return similarity
具体看下get_stringSet_similarity
def get_stringSet_similarity(set_m: Set[str], set_n: Set[str]) -> float:max_similarity = 0.0for m in set_m:for n in set_n:# 对比每个元素的相似度,找到最大的similarity = get_string_similarity(m, n)max_similarity = max_similarity if max_similarity > similarity else similarityreturn max_similarity
再看下get_string_similarity
好可爱,作者fu了一篇博客https://blog.csdn.net/dcrmg/article/details/79228589
用的是python-Levenshtein
def get_string_similarity(a: str, b: str) -> float:# 计算莱文斯坦比similarity_score = Levenshtein.ratio(a, b)return similarity_score
def update_with(self, attack_node: AttackGraphNode) -> TemplateNode:# instance数量加1,即该node又多融合了一个Instanceself.instance_count += 1# 融合结点self.merge_node(attack_node)return self
查看merge_node
def merge_node(self, node: AttackGraphNode):# 字典取并集self.nlp |= node.nlpself.ioc |= node.iocnode.nlp = self.nlpnode.ioc = self.ioc
----1355继续看代码叭~再用一个小时,看下technique-identification
—1616看了一下午,终于好像,看明白了一点点subgraph_alignment,不容易欸!!!但是这复杂度也太高了叭!!!
# 输入:报告、挑选的techniques、模板地址、输出地址
#输出:technique+对应子图+对应分数
#功能:发现文本里的technique
# 这个之后怎么处理呢?
(1)picked_techniques
这里可以很清楚的看到【12:18】,就是编号T1234。
name = “/techniques/T1041”
print(name[12:18])
T1041
picked_techniques_name_dict = {"/techniques/T1566/001": "Phishing","/techniques/T1566/002": "Phishing","/techniques/T1566/003": "Phishing","/techniques/T1195/001": "Supply Chain Compromise","/techniques/T1195/002": "Supply Chain Compromise","/techniques/T1059/001": "Command and Scripting Interpreter","/techniques/T1059/003": "Command and Scripting Interpreter","/techniques/T1059/005": "Command and Scripting Interpreter","/techniques/T1059/007": "Command and Scripting Interpreter","/techniques/T1559/001": "Inter-Process Communication","/techniques/T1204/001": "User Execution: Malicious Link","/techniques/T1204/002": "User Execution: Malicious File","/techniques/T1053/005": "Scheduled Task/Job","/techniques/T1037/001": "Boot or Logon Initialization Scripts","/techniques/T1547/001": "Boot or Logon Autostart Execution","/techniques/T1547/002": "Boot or Logon Autostart Execution","/techniques/T1112": "Modify Registry","/techniques/T1012": "Query Registry","/techniques/T1218/005": "Signed Binary Proxy Execution: Mshta","/techniques/T1218/010": "Signed Binary Proxy Execution: REgsvr32","/techniques/T1218/011": "Signed Binary Proxy Execution: Rundll32","/techniques/T1078/001": "Valid Accounts","/techniques/T1518/001": "Software Discovery","/techniques/T1083": "File and Directory Discovery","/techniques/T1057": "Process Discovery","/techniques/T1497/001": "Virtualization/Sandbox Evasion","/techniques/T1560/001": "Archive Collected Data","/techniques/T1123": "Audio Capture","/techniques/T1119": "Automated Collection","/techniques/T1041": "Exfiltration Over C2 Channel"}
picked_techniques = set([technique_name[12:18] for technique_name in picked_techniques_name_dict.keys()])
# 先对文本进行分析
ag = attackGraph_generating(text)
# 如果没有模板的话,就根据technique_list生成模板;如果有的话,就直接load
if template_path == "":tt_list = techniqueTemplate_generating(technique_list=technique_list)
else:tt_list = load_techniqueTemplate_fromFils(template_path)
#
attackMatcher = technique_identifying_forAttackGraph(ag, tt_list, output_file)
return attackMatcher
def technique_identifying_forAttackGraph(graph: AttackGraph, template_list: List[TechniqueTemplate], output_file: str) -> AttackMatcher:# 对整个有关report_text的图进行AttackMatcher实例化,用该对象的方法,对report进行matchattackMatcher = AttackMatcher(graph)for template in template_list:# 遍历templist,对每个template进行TechniqueIdentifier实例化,该对象可记录matching record。#之后,将该technique_identifier加入到attackMatcherattackMatcher.add_technique_identifier(TechniqueIdentifier(template))attackMatcher.attack_matching()attackMatcher.print_match_result()# 感觉没有生成attackMatcher.to_json_file(output_file + "_techniques.json")return attackMatcher
def attack_matching(self):# subgraph_list = nx.strongly_connected_components(self.attack_graph_nx)# 将attack_graph变成无向图后,找到所有连通子图subgraph_list = nx.connected_components(self.attack_graph_nx.to_undirected())for subgraph in subgraph_list:logging.debug("---Get subgraph: %s---" % subgraph)# matching_result = []for technique_identifier in self.technique_identifier_list:# technique和子图对齐technique_identifier.subgraph_alignment(subgraph, self.attack_graph)# for node in subgraph:# # Try to find a match in technique_identifier_list# for technique_identifier in self.technique_identifier_list:# technique_identifier.node_alignment(node, nx_graph)# for edge in subgraph.edges():# for technique_identifier in self.technique_identifier_list:# technique_identifier.edge_alignment(edge, nx_graph)# find the most match techniquefor technique_identifier in self.technique_identifier_list:node_alignment_score = technique_identifier.get_graph_alignment_score() #/ self.normalized_factorif technique_identifier.technique_template.technique_name not in self.technique_matching_score.keys():self.technique_matching_score[technique_identifier.technique_template.technique_name] = node_alignment_scoreself.technique_matching_subgraph[technique_identifier.technique_template.technique_name] = subgraphself.technique_matching_record[technique_identifier.technique_template.technique_name] = technique_identifier.node_match_recordelif self.technique_matching_score[technique_identifier.technique_template.technique_name] < node_alignment_score:self.technique_matching_score[technique_identifier.technique_template.technique_name] = node_alignment_scoreself.technique_matching_subgraph[technique_identifier.technique_template.technique_name] = subgraphself.technique_matching_record[technique_identifier.technique_template.technique_name] = technique_identifier.node_match_record# matching_result.append((technique_identifier.technique_template, node_alignment_score))logging.debug("---S3.2: matching result %s\n=====\n%s - %f!---" % (technique_identifier.technique_template.technique_name, subgraph, node_alignment_score))
def subgraph_alignment(self, subgraph: set, attack_graph: AttackGraph):self.node_match_record = {}# 对于子图里的每个结点,和template中的结点做对齐for node in subgraph:self.node_alignment(attack_graph.attackNode_dict[node])k_list = []v_list = []# k为template中technique的index;v为攻击点和对应分数for k, v in self.node_match_record.items():k_list.append(k)# v = [(attack_node, node_similarity_score),...,(attack_node, node_similarity_score)]if v is None:v_list.append([''])else:v_list.append(v)self.node_match_record = {}best_match_score = 0best_match_record = {}# *:将列表拆成两个独立参数,然后进行组合for item in itertools.product(*v_list):
# 对于每一组template_like_attack_nodes,如果第i个template结点对应的为空,则为none;不然,则为其对应的attack_nodesfor i in range(0, len(k_list)):if item[i] == '':self.node_match_record[k_list[i]] = Noneelse:self.node_match_record[k_list[i]] = item[i]# node_match_record:【node_index, node_node_similarity】
# 对于technique模板中的边,分别计算在此组attack——nodes下的分值for template_edge, instance_count in self.technique_template.technique_edge_dict.items():source_index = template_edge[0]sink_index = template_edge[1]# No matched node for edge# 异常处理:如果起点或终点在node_match_record中不存在——没有对应的template点,其边记录为0,出现异常也记为0try:if self.node_match_record[source_index] is None or self.node_match_record[sink_index] is None:self.edge_match_record[template_edge] = 0.0continueexcept:self.edge_match_record[template_edge] = 0.0continuesource_node = self.node_match_record[source_index][0]sink_node = self.node_match_record[sink_index][0]if source_node == sink_node:distance = 1else:try:# 找两点之间最短路径,如果有错误,就将边之间的分值记为0.distance = nx.shortest_path_length(attack_graph.attackgraph_nx, source_node, sink_node)except:self.edge_match_record[template_edge] = 0.0continuesource_node_matching_score = self.node_match_record[source_index][1]sink_node_matching_score = self.node_match_record[sink_index][1]# 边匹配计算分数=结点分数相乘后开方,除以结点之间距离edge_matching_score = math.sqrt(source_node_matching_score * sink_node_matching_score) / distanceself.edge_match_record[template_edge] = edge_matching_scorematch_score = self.get_graph_alignment_score()if match_score > best_match_score:best_match_score = match_scorebest_match_record = self.node_match_recordself.node_match_record = best_match_record
def get_graph_alignment_score(self):return self.get_node_alignment_score() + self.get_edge_alignment_score()
node_alignment_score = 0.0if self.node_match_record is None:return 0
index = 0
for node_index, node_node_similarity in self.node_match_record.items():if self.technique_template.technique_node_list[node_index].type == "actor":continueif node_node_similarity is not None:# ToDo: Need to select the larger similarity score# 攻击结点和模板节点的相似度*模板结点出现的次数node_alignment_score += node_node_similarity[1] * self.technique_template.technique_node_list[node_index].instance_count # math.sqrtindex += 1node_alignment_score /= (self.technique_template.node_normalization + 1)
return node_alignment_score
def get_edge_alignment_score(self):edge_alignment_score = 0.0for edge, edge_similarity in self.edge_match_record.items():edge_alignment_score += edge_similarity * (self.technique_template.technique_edge_dict[edge])edge_alignment_score /= (self.technique_template.edge_normalization + 1)return edge_alignment_score
-----2018洗完澡,做完核酸,收到了零食!!!开心!!
然后和舍友聊天到现在嘿嘿(讲座也没听,打算看看论文啦!!)
emmm宿舍成感情茶话会了hhhh
好啦,和爸爸妈妈打电话~彻底废了