NNDL 作业11:优化算法比较
创始人
2024-02-12 11:04:10
0

 

目录

1. 编程实现图6-1,并观察特征

2. 观察梯度方向

3. 编写代码实现算法,并可视化轨迹

4. 分析上图,说明原理(选做)

5. 总结SGD、Momentum、AdaGrad、Adam的优缺点(选做)

6. Adam这么好,SGD是不是就用不到了?(选做)

7. 增加RMSprop、Nesterov算法。(选做)

8. 基于MNIST数据集的更新方法的比较(选做)


参考:深度学习入门:基于Python的理论与实现 (ituring.com.cn)

1. 编程实现图6-1,并观察特征

 

 

 参考代码:

import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# https://blog.csdn.net/weixin_39228381/article/details/108511882def func(x, y):return x * x / 20 + y * ydef paint_loss_func():x = np.linspace(-50, 50, 100)  # x的绘制范围是-50到50,从改区间均匀取100个数y = np.linspace(-50, 50, 100)  # y的绘制范围是-50到50,从改区间均匀取100个数X, Y = np.meshgrid(x, y)Z = func(X, Y)fig = plt.figure()  # figsize=(10, 10))ax = Axes3D(fig)plt.xlabel('x')plt.ylabel('y')ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')plt.show()paint_loss_func()

 2. 观察梯度方向

3. 编写代码实现算法,并可视化轨迹

SGD、Momentum、Adagrad、Adam

参考代码:

# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
from collections import OrderedDictclass SGD:"""随机梯度下降法(Stochastic Gradient Descent)"""def __init__(self, lr=0.01):self.lr = lrdef update(self, params, grads):for key in params.keys():params[key] -= self.lr * grads[key]class Momentum:"""Momentum SGD"""def __init__(self, lr=0.01, momentum=0.9):self.lr = lrself.momentum = momentumself.v = Nonedef update(self, params, grads):if self.v is None:self.v = {}for key, val in params.items():self.v[key] = np.zeros_like(val)for key in params.keys():self.v[key] = self.momentum * self.v[key] - self.lr * grads[key]params[key] += self.v[key]class Nesterov:"""Nesterov's Accelerated Gradient (http://arxiv.org/abs/1212.0901)"""def __init__(self, lr=0.01, momentum=0.9):self.lr = lrself.momentum = momentumself.v = Nonedef update(self, params, grads):if self.v is None:self.v = {}for key, val in params.items():self.v[key] = np.zeros_like(val)for key in params.keys():self.v[key] *= self.momentumself.v[key] -= self.lr * grads[key]params[key] += self.momentum * self.momentum * self.v[key]params[key] -= (1 + self.momentum) * self.lr * grads[key]class AdaGrad:"""AdaGrad"""def __init__(self, lr=0.01):self.lr = lrself.h = Nonedef update(self, params, grads):if self.h is None:self.h = {}for key, val in params.items():self.h[key] = np.zeros_like(val)for key in params.keys():self.h[key] += grads[key] * grads[key]params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)class RMSprop:"""RMSprop"""def __init__(self, lr=0.01, decay_rate=0.99):self.lr = lrself.decay_rate = decay_rateself.h = Nonedef update(self, params, grads):if self.h is None:self.h = {}for key, val in params.items():self.h[key] = np.zeros_like(val)for key in params.keys():self.h[key] *= self.decay_rateself.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)class Adam:"""Adam (http://arxiv.org/abs/1412.6980v8)"""def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):self.lr = lrself.beta1 = beta1self.beta2 = beta2self.iter = 0self.m = Noneself.v = Nonedef update(self, params, grads):if self.m is None:self.m, self.v = {}, {}for key, val in params.items():self.m[key] = np.zeros_like(val)self.v[key] = np.zeros_like(val)self.iter += 1lr_t = self.lr * np.sqrt(1.0 - self.beta2 ** self.iter) / (1.0 - self.beta1 ** self.iter)for key in params.keys():self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])self.v[key] += (1 - self.beta2) * (grads[key] ** 2 - self.v[key])params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)def f(x, y):return x ** 2 / 20.0 + y ** 2def df(x, y):return x / 10.0, 2.0 * yinit_pos = (-7.0, 2.0)
params = {}
params['x'], params['y'] = init_pos[0], init_pos[1]
grads = {}
grads['x'], grads['y'] = 0, 0optimizers = OrderedDict()
optimizers["SGD"] = SGD(lr=0.95)
optimizers["Momentum"] = Momentum(lr=0.1)
optimizers["AdaGrad"] = AdaGrad(lr=1.5)
optimizers["Adam"] = Adam(lr=0.3)idx = 1for key in optimizers:optimizer = optimizers[key]x_history = []y_history = []params['x'], params['y'] = init_pos[0], init_pos[1]for i in range(30):x_history.append(params['x'])y_history.append(params['y'])grads['x'], grads['y'] = df(params['x'], params['y'])optimizer.update(params, grads)x = np.arange(-10, 10, 0.01)y = np.arange(-5, 5, 0.01)X, Y = np.meshgrid(x, y)Z = f(X, Y)# for simple contour linemask = Z > 7Z[mask] = 0# plotplt.subplot(2, 2, idx)idx += 1plt.plot(x_history, y_history, 'o-', color="red")plt.contour(X, Y, Z)  # 绘制等高线plt.ylim(-10, 10)plt.xlim(-10, 10)plt.plot(0, 0, '+')plt.title(key)plt.xlabel("x")plt.ylabel("y")plt.subplots_adjust(wspace=0, hspace=0)  # 调整子图间距
plt.show()

4. 分析上图,说明原理(选做)

  1. 为什么SGD会走“之字形”?其它算法为什么会比较平滑?
  2. Momentum、AdaGrad对SGD的改进体现在哪里?速度?方向?在图上有哪些体现?
  3. 仅从轨迹来看,Adam似乎不如AdaGrad效果好,是这样么?
  4. 四种方法分别用了多长时间?是否符合预期?
  5. 调整学习率、动量等超参数,轨迹有哪些变化?

5. 总结SGD、Momentum、AdaGrad、Adam的优缺点(选做)

6. Adam这么好,SGD是不是就用不到了?(选做)

7. 增加RMSprop、Nesterov算法。(选做)

对比Momentum与Nesterov、AdaGrad与RMSprop。

8. 基于MNIST数据集的更新方法的比较(选做)

在原图基础上,增加RMSprop、Nesterov算法。

编程实现,并谈谈自己的看法。

 优化算法代码可参考前面的内容。

 MNIST数据集的更新方法的比较:

# coding: utf-8
import os
import sys
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from common.util import smooth_curve
from common.multi_layer_net import MultiLayerNet
from common.optimizer import *# 0:读入MNIST数据==========
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True)train_size = x_train.shape[0]
batch_size = 128
max_iterations = 2000# 1:进行实验的设置==========
optimizers = {}
optimizers['SGD'] = SGD()
optimizers['Momentum'] = Momentum()
optimizers['AdaGrad'] = AdaGrad()
optimizers['Adam'] = Adam()
#optimizers['RMSprop'] = RMSprop()networks = {}
train_loss = {}
for key in optimizers.keys():networks[key] = MultiLayerNet(input_size=784, hidden_size_list=[100, 100, 100, 100],output_size=10)train_loss[key] = []    # 2:开始训练==========
for i in range(max_iterations):batch_mask = np.random.choice(train_size, batch_size)x_batch = x_train[batch_mask]t_batch = t_train[batch_mask]for key in optimizers.keys():grads = networks[key].gradient(x_batch, t_batch)optimizers[key].update(networks[key].params, grads)loss = networks[key].loss(x_batch, t_batch)train_loss[key].append(loss)if i % 100 == 0:print( "===========" + "iteration:" + str(i) + "===========")for key in optimizers.keys():loss = networks[key].loss(x_batch, t_batch)print(key + ":" + str(loss))# 3.绘制图形==========
markers = {"SGD": "o", "Momentum": "x", "AdaGrad": "s", "Adam": "D"}
x = np.arange(max_iterations)
for key in optimizers.keys():plt.plot(x, smooth_curve(train_loss[key]), marker=markers[key], markevery=100, label=key)
plt.xlabel("iterations")
plt.ylabel("loss")
plt.ylim(0, 1)
plt.legend()
plt.show()

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
客厅放八骏马摆件可以吗(家里摆... 今天给各位分享客厅放八骏马摆件可以吗的知识,其中也会对家里摆八骏马摆件好吗进行解释,如果能碰巧解决你...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...