本系列本来打算每一章都写笔记记录下来,不过看来几个视频之后,发现2,3其只是在普及torch以及复现基础手写字体识别的例子,与torchaudio和音频处理关系不大,就跳过,感兴趣的可以直接看代码。4,5,6,7都是在讲解如何构建数据集,所以一并记录:
构建和训练mnist手写字符识别网络
推理接口的实现
创建数据集处理类
基于torchaudio提取音频的梅尔频谱特征
样本的Padding和cut
使用GPU训练
官方数据集要注册才能下载,直接从这里urbansound8k下载。
其中audio是音频文件,大概8700多个
metadata为标注的文件夹
metadata/UrbanSound8K.csv:
class UrbanSoundDataset(Dataset):def __init__(self, annotations_file, audio_dir):self.annotations = pd.read_csv(annotations_file)# 使用panda加载csvself.audio_dir = audio_dirdef __len__(self):return len(self.annotations)def __getitem__(self, index):audio_sample_path = self._get_audio_sample_path(index)label = self._get_audio_sample_label(index)signal, sr = torchaudio.load(audio_sample_path)# 返回tensor类型的音频序列和采样率,与librosa.load的区别是,librosa返回的音频序列是numpy格式return signal, labeldef _get_audio_sample_path(self, index):fold = f"fold{self.annotations.iloc[index, 5]}"path = os.path.join(self.audio_dir, fold, self.annotations.iloc[index, 0])return pathdef _get_audio_sample_label(self, index):return self.annotations.iloc[index, 6]
梅尔频谱为音频信号处理中常见的特征表示,torchaudio中使用torchaudio.transforms模块来实现
mel_spectrogram = torchaudio.transforms.MelSpectrogram(sample_rate=SAMPLE_RATE,n_fft=1024,hop_length=512,n_mels=64)
class UrbanSoundDataset(Dataset):def __init__(self, annotations_file, audio_dir, transformation,target_sample_rate):self.annotations = pd.read_csv(annotations_file)self.audio_dir = audio_dirself.transformation = transformationself.target_sample_rate = target_sample_rate
在梅尔转换之前,需要对音频信号进行重采样和多声道合并,所以定义这两个函数:
def _resample_if_necessary(self, signal, sr):# 每个信号的采样率不一致,如果跟共有变量的采样率不一致的话,需要重采样if sr != self.target_sample_rate:resampler = torchaudio.transforms.Resample(sr, self.target_sample_rate)signal = resampler(signal)return signal
def _mix_down_if_necessary(self, signal):# 每个signal -> (channel,samples) -> (2,16000) -> (1,16000)# 需要把所有的通道混合起来,保持维度不变if signal.shape[0] > 1:signal = torch.mean(signal, dim=0, keepdim=True)return signal
然后在get_item的函数里把几个函数串起来,则完成了梅尔频谱特征提取的过程:
def __getitem__(self, index):audio_sample_path = self._get_audio_sample_path(index)label = self._get_audio_sample_label(index)signal, sr = torchaudio.load(audio_sample_path)signal = self._resample_if_necessary(signal, sr) # 重采样signal = self._mix_down_if_necessary(signal) # 多声道合并signal = self.transformation(signal) # 梅尔频谱提取return signal, label
由于训练的要求,需要把每个信号样本都缩放到同一尺度,所以使用了padding(尺度小于阈值),cut(尺度大于阈值)的处理,添加两个函数:
直接取前面到阈值的部分(似乎有点简单粗暴?)
def _cut_if_necessary(self, signal):# 举例 signal -> Tensor -> (1,num_samples) -> (1,50000) -> 切片后变成 (1,22500)if signal.shape[1] > self.num_samples:signal = signal[:, :self.num_samples]return signal
def _right_pad_if_necessary(self, signal):length_signal = signal.shape[1]if length_signal < self.num_samples:num_missing_samples = self.num_samples - length_signallast_dim_padding = (0, num_missing_samples)# 每个signal都是二维的,所以以上式子,第一个0是不pad的,只pad第二维signal = torch.nn.functional.pad(signal, last_dim_padding)return signal
就是加了一个判断,这也单独列了一章……
if torch.cuda.is_available():device = "cuda"else:device = "cpu"print(f"Using device {device}")
import osimport torch
from torch.utils.data import Dataset
import pandas as pd
import torchaudioclass UrbanSoundDataset(Dataset):def __init__(self,annotations_file,audio_dir,transformation,target_sample_rate,num_samples,device):self.annotations = pd.read_csv(annotations_file)self.audio_dir = audio_dirself.device = deviceself.transformation = transformation.to(self.device)self.target_sample_rate = target_sample_rateself.num_samples = num_samplesdef __len__(self):return len(self.annotations)def __getitem__(self, index):audio_sample_path = self._get_audio_sample_path(index)label = self._get_audio_sample_label(index)signal, sr = torchaudio.load(audio_sample_path)signal = signal.to(self.device)signal = self._resample_if_necessary(signal, sr)signal = self._mix_down_if_necessary(signal)signal = self._cut_if_necessary(signal)signal = self._right_pad_if_necessary(signal)signal = self.transformation(signal)return signal, labeldef _cut_if_necessary(self, signal):if signal.shape[1] > self.num_samples:signal = signal[:, :self.num_samples]return signaldef _right_pad_if_necessary(self, signal):length_signal = signal.shape[1]if length_signal < self.num_samples:num_missing_samples = self.num_samples - length_signallast_dim_padding = (0, num_missing_samples)signal = torch.nn.functional.pad(signal, last_dim_padding)return signaldef _resample_if_necessary(self, signal, sr):if sr != self.target_sample_rate:resampler = torchaudio.transforms.Resample(sr, self.target_sample_rate)signal = resampler(signal)return signaldef _mix_down_if_necessary(self, signal):if signal.shape[0] > 1:signal = torch.mean(signal, dim=0, keepdim=True)return signaldef _get_audio_sample_path(self, index):fold = f"fold{self.annotations.iloc[index, 5]}"path = os.path.join(self.audio_dir, fold, self.annotations.iloc[index, 0])return pathdef _get_audio_sample_label(self, index):return self.annotations.iloc[index, 6]if __name__ == "__main__":ANNOTATIONS_FILE = "/home/valerio/datasets/UrbanSound8K/metadata/UrbanSound8K.csv"AUDIO_DIR = "/home/valerio/datasets/UrbanSound8K/audio"SAMPLE_RATE = 22050NUM_SAMPLES = 22050if torch.cuda.is_available():device = "cuda"else:device = "cpu"print(f"Using device {device}")mel_spectrogram = torchaudio.transforms.MelSpectrogram(sample_rate=SAMPLE_RATE,n_fft=1024,hop_length=512,n_mels=64)usd = UrbanSoundDataset(ANNOTATIONS_FILE,AUDIO_DIR,mel_spectrogram,SAMPLE_RATE,NUM_SAMPLES,device)print(f"There are {len(usd)} samples in the dataset.")signal, label = usd[0]
以上就是整个数据集的定义、加载、预处理及梅尔频谱特征提取过程,为后续的训练做好数据的准备。