365天深度学习训练营-第7周:咖啡豆识别
创始人
2024-02-06 14:18:31
0

目录

一、前言

二、我的环境

三、代码实现

 四、VGG-16框架

 五、LeNet5模型

六、模型改进


一、前言

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/xLjALoOD8HPZcH563En8bQ) 中的学习记录博客**
>- **🍦 参考文章:365天深度学习训练营-第7周:咖啡豆识别(训练营内部成员可读)**
>- **🍖 原作者:[K同学啊|接辅导、项目定制](https://mtyjkh.blog.csdn.net/)**
● 难度:夯实基础⭐⭐
● 语言:Python3、TensorFlow2
● 时间:9月5-9月9日🍺 要求:
1. 自己搭建VGG-16网络框架
2. 调用官方的VGG-16网络框架🍻 拔高(可选):
1. 验证集准确率达到100%
2. 使用PPT画出VGG-16算法框架图(发论文需要这项技能)🔎 探索(难度有点大)
1. 在不影响准确率的前提下轻量化模型
○ 目前VGG16的Total params是134,276,932

二、我的环境

语言环境:Python3.7

编译器:jupyter notebook

深度学习环境:TensorFlow2

三、代码实现

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")from tensorflow.keras import layers
import numpy             as np
import matplotlib.pyplot as plt
import pathlibdata_dir = "./49-data/"
data_dir = pathlib.Path(data_dir)image_count = len(list(data_dir.glob('*/*.png')))print("图片总数为:",image_count)batch_size = 32
img_height = 224
img_width = 224"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)class_names = train_ds.class_names
print(class_names)plt.figure(figsize=(10, 4))  # 图形的宽为10高为5for images, labels in train_ds.take(1):for i in range(10):ax = plt.subplot(2, 5, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)breakAUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds   = val_ds.map(lambda x, y: (normalization_layer(x), y))image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]# 查看归一化后的数据
print(np.min(first_image), np.max(first_image))# model = tf.keras.applications.VGG16(weights='imagenet')
# model.summary()from tensorflow.keras import Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flattendef VGG16(nb_classes, input_shape):input_tensor = Input(shape=input_shape)# 1st blockx = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)# 2nd blockx = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)# 3rd blockx = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)# 4th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)# 5th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)# full connectionx = Flatten()(x)x = Dense(4096, activation='relu',  name='fc1')(x)x = Dense(4096, activation='relu', name='fc2')(x)output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)model = Model(input_tensor, output_tensor)return modelmodel=VGG16(len(class_names), (img_width, img_height, 3))
model.summary()# 设置初始学习率
initial_learning_rate = 1e-4lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate,decay_steps=30,      # 敲黑板!!!这里是指 steps,不是指epochsdecay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lrstaircase=True)# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])epochs = 20history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 

 

 四、VGG-16框架

 

 五、LeNet5模型

def LeNet5(nb_classes, input_shape):input_tensor = Input(shape=input_shape)# 1st blockx = Conv2D(6, (5,5), activation='sigmoid', padding='same',name='block1_conv1')(input_tensor)#x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)x = Conv2D(16, (5,5), activation='sigmoid', padding='same',name='block2_conv1')(x)x =MaxPooling2D((2,2),strides=(2,2),name = 'block2_pool')(x)# full connectionx = Flatten()(x)x = Dense(120, activation='sigmoid',  name='fc1')(x)x = Dense(84, activation='sigmoid', name='fc2')(x)output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)model = Model(input_tensor, output_tensor)return modelmodel=LeNet5(len(class_names), (img_width, img_height, 3))
model.summary()

效果极差,下次一定不用 

六、模型改进

1、调低学习率(或按迭代次数衰减)
2、调整参数的初始化方法
3、调整输入数据的标准化方法
4、修改Loss函数
5、增加正则化
6、使用BN/GN层(中间层数据的标准化)
7、使用dropout

优化1

model = keras.models.Sequential()# 优化 增加L2正则化
model.add(keras.layers.Conv2D(64, (3, 3), padding='same', kernel_regularizer=keras.regularizers.l2(weight_decay)))
model.add(keras.layers.Activation('relu'))
# 优化 添加BN层和Dropout
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Dropout(0.3))model.add(keras.layers.Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2))model.add(keras.layers.Conv2D(128, (3, 3), padding='same', activation='relu'))
model.add(keras.layers.Conv2D(128, (3, 3), padding='same', activation='relu'))
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2))model.add(keras.layers.Conv2D(256, (3, 3), padding='same', activation='relu'))
model.add(keras.layers.Conv2D(256, (3, 3), padding='same', activation='relu'))
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2))model.add(keras.layers.Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(keras.layers.Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2))model.add(keras.layers.Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(keras.layers.Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2))model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(256, activation='relu'))  # VGG16为4096
model.add(keras.layers.Dense(128, activation='relu'))  # VGG16为4096
model.add(keras.layers.Dense(num_classes, activation='softmax'))  # VGG16为1000

优化2

model = models.Sequential([layers.experimental.preprocessing.Rescaling( 1. ,input_shape=(img_height, img_width, 3)),layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same'),  # 卷积层1#layers.BatchNormalization(),  # BN层1layers.Activation('relu'),  # 激活层1layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', ),#layers.BatchNormalization(),  # BN层1layers.Activation('relu') , # 激活层1layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),#layers.Dropout(0.2),  # dropout层#layers.Conv2D(filters=128, kernel_size=(3, 3), padding='same'),#layers.BatchNormalization(),  # BN层1layers.Activation('relu'),  # 激活层1layers.Conv2D(filters=128, kernel_size=(3, 3), padding='same'),#layers.BatchNormalization(),  # BN层1layers.Activation('relu'),  # 激活层1layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),#layers.Dropout(0.2),  # dropout层#layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same'),#layers.BatchNormalization() , # BN层1layers.Activation('relu'),  # 激活层1layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same'),#layers.BatchNormalization() , # BN层1layers.Activation('relu') , # 激活层1layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same'),# layers.BatchNormalization(),layers.Activation('relu'),layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),#layers.Dropout(0.2),#layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),# layers.BatchNormalization() , # BN层1layers.Activation('relu') , # 激活层1layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),#layers.BatchNormalization() , # BN层1layers.Activation('relu'),  # 激活层1layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),#layers.BatchNormalization(),layers.Activation('relu'),layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),#layers.Dropout(0.2),#layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),# layers.BatchNormalization() , # BN层1layers.Activation('relu'),  # 激活层1layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),#layers.BatchNormalization(),  # BN层1layers.Activation('relu'),  # 激活层1layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),# layers.BatchNormalization(),layers.Activation('relu'),layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),#layers.Dropout(0.2),layers.Flatten(),  # Flatten层,连接卷积层与全连接层layers.Dense(4096, activation='relu'),  # 全连接层,特征进一步提取layers.Dense(4096, activation='relu'),  # 全连接层,特征进一步提取layers.Dense(len(class_names),activation='softmax')  # 输出层,输出预期结果
])
model.summary()

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
客厅放八骏马摆件可以吗(家里摆... 今天给各位分享客厅放八骏马摆件可以吗的知识,其中也会对家里摆八骏马摆件好吗进行解释,如果能碰巧解决你...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...