一文带你搞懂sklearn.metrics混淆矩阵
创始人
2024-02-04 01:20:58
0

一般的二分类任务需要的评价指标有4个

  • accuracy
  • precision
  • recall
  • f1-score

四个指标的计算公式如下

accuracy = \frac{TP+TN}{TP+TN+FP+FN}

precision=\frac{TP}{TP+FP}

recall=\frac{TP}{TP+FN}

 F_1-score=\frac{2*precision*recall}{precision+recall}

计算这些指标要涉及到下面这四个概念,而它们又构成了混淆矩阵

  • TP (True Positive)
  • FP (False Positive)
  • TN (True Negative)
  • FN (False Negative)
混淆矩阵实际值
01
预测值0TNFP
1FNTP

这里我给出的混淆矩阵是按照sklearn-metrics-confusion_matrix的形式绘制的。

Negative中文译作阴性,一般指标签0;Positive中文译作阳性,一般指标签1。

True中文译作预测正确;False中文译作预测错误。

TN 预测正确(True)并且实际为阴性(Negative)即实际值和预测值均为Negative

TP 预测正确(True)并且实际为阳性(Positive)即实际值和预测值均为Positive

FN 预测错误(False)并且实际为阴性(Negative)即实际值为Negative,预测值为Positive

FP 预测错误(False)并且实际为阳性(Positive)即实际值为Positive,预测值为Negative

下面以实际代码为例进行介绍

from sklearn import metrics
print(metrics.confusion_matrix(y_true=[0, 0, 0, 1, 1, 1],y_pred=[1, 1, 1, 0, 1, 0]))

这里的y_true是实际值,y_pred是预测值,可以观察到

TN=0,没有样本实际值和预测值同时为0

TP=1,只有第5个样本实际值和预测值均为1

FN=3,第1,2,3个样本实际值为0且预测值为1

FP=2,第4,6个样本实际值为1且预测值为0

输出结果也和我们观察的一致

[[0 3][2 1]]

编写函数根据混淆矩阵计算 accuracy, precision, recall, f1-score

def cal(array):tp = array[1][1]tn = array[0][0]fp = array[0][1]fn = array[1][0]a = (tp+tn)/(tp+tn+fp+fn)p = tp/(tp+fp)r = tp/(tp+fn)f = 2*p*r/(p+r)print(a,p,r,f)

使用编写的函数cal计算该混淆矩阵的四项指标,并与metric自带的分类报告(classification_report)函数的结果进行比较,这里第三个参数digits=4表示保留4位小数

cal([[0, 3],[2, 1]])
print(metrics.classification_report(y_true=[0, 0, 0, 1, 1, 1], y_pred=[1, 1, 1, 0, 1, 0], digits=4))

运行结果如下,可以发现两者的计算结果一致。

0.16666666666666666 0.25 0.3333333333333333 0.28571428571428575precision    recall  f1-score   support0     0.0000    0.0000    0.0000         31     0.2500    0.3333    0.2857         3accuracy                         0.1667         6macro avg     0.1250    0.1667    0.1429         6
weighted avg     0.1250    0.1667    0.1429         6

这里需要补充说明一下,为什么0那一行和1那一行都有precision, recall, f1-score。

一般来说,我们通常计算的这三项指标均是把1视为阳性,把0视为阴性,以1作为研究对象。所以1那一行的三项指标的值和cal函数计算的结果一致。而0那一行表示把0作为研究对象。

相关内容

热门资讯

喜欢穿一身黑的男生性格(喜欢穿... 今天百科达人给各位分享喜欢穿一身黑的男生性格的知识,其中也会对喜欢穿一身黑衣服的男人人好相处吗进行解...
发春是什么意思(思春和发春是什... 本篇文章极速百科给大家谈谈发春是什么意思,以及思春和发春是什么意思对应的知识点,希望对各位有所帮助,...
网络用语zl是什么意思(zl是... 今天给各位分享网络用语zl是什么意思的知识,其中也会对zl是啥意思是什么网络用语进行解释,如果能碰巧...
为什么酷狗音乐自己唱的歌不能下... 本篇文章极速百科小编给大家谈谈为什么酷狗音乐自己唱的歌不能下载到本地?,以及为什么酷狗下载的歌曲不是...
华为下载未安装的文件去哪找(华... 今天百科达人给各位分享华为下载未安装的文件去哪找的知识,其中也会对华为下载未安装的文件去哪找到进行解...
怎么往应用助手里添加应用(应用... 今天百科达人给各位分享怎么往应用助手里添加应用的知识,其中也会对应用助手怎么添加微信进行解释,如果能...
家里可以做假山养金鱼吗(假山能... 今天百科达人给各位分享家里可以做假山养金鱼吗的知识,其中也会对假山能放鱼缸里吗进行解释,如果能碰巧解...
四分五裂是什么生肖什么动物(四... 本篇文章极速百科小编给大家谈谈四分五裂是什么生肖什么动物,以及四分五裂打一生肖是什么对应的知识点,希...
一帆风顺二龙腾飞三阳开泰祝福语... 本篇文章极速百科给大家谈谈一帆风顺二龙腾飞三阳开泰祝福语,以及一帆风顺二龙腾飞三阳开泰祝福语结婚对应...
美团联名卡审核成功待激活(美团... 今天百科达人给各位分享美团联名卡审核成功待激活的知识,其中也会对美团联名卡审核未通过进行解释,如果能...