问题:把遥感影像转为一张表。
现有一全球经济作物数据alfalfa的产量。
alfalfa是一种亚洲西南部多年生草本植物,是重要的经济作物。在图中也可以看到,主要分布在热带和南美洲。
我们想把影像转表,即经纬度、栅格值(苜蓿产量)
上述功能在ArcGIS中是这样实现的。
对于我上述全球影像来说,栅格转点需要6分钟。添加字段和计算几何都需要花费更多的时间。
采用python的gdal方法,首先进行影像裁剪。直接上代码:
dataset = gdal.Open("D:/work/0318/Suitability Raster files/Suitability Raster files/High input/high_banana_plaintain.tif")
output_raster=r'D:/work/0318/Suitability Raster files/Suitability Raster files/High_mask/high_banana_plaintain_mask.tif'
input_shape = r'D:/work/0318/shp/Africa.shp'# 开始裁剪
ds = gdal.Warp(output_raster,dataset,format = 'GTiff',cutlineDSName = input_shape, cutlineWhere="FIELD = 'whatever'",dstNodata = -90)
这里我设置nodata为负值,是我本来影像的nodata值,可以在GIS查看
然后再进行统计:
import time
from osgeo import gdal
import numpy as np
import pandas as pd
import osdef rasterToPoints(rasterfile, nodata=None, v_name=None):""":param rasterfile: 待执行栅格转点的栅格文件:param nodata:栅格中的无数据值,默认取栅格的最小值:param v_name:导出表格中栅格值所在列的名称,默认为栅格的文件名:return:x、y、value"""# numpy禁用科学计数法,pandas中存储浮点型时只保留四位小数np.set_printoptions(suppress=True)pd.set_option('display.float_format', lambda x: '%.4f' % x)rds = gdal.Open(rasterfile) # type:gdal.Datasetif rds.RasterCount != 1:print("Warning, RasterCount > 1")cols = rds.RasterXSizerows = rds.RasterYSizeband = rds.GetRasterBand(1) # type:gdal.Bandtransform = rds.GetGeoTransform()print(transform)x_origin = transform[0]y_origin = transform[3]pixel_width = transform[1]pixel_height = transform[5]if (pixel_height + pixel_width) != 0:print("Warning, pixelWidth != pixelHeight")# 读取栅格values = np.array(band.ReadAsArray())x = np.arange(x_origin + pixel_width * 0.5, x_origin + (cols + 0.5) * pixel_width, pixel_width)y = np.arange(y_origin + pixel_height*0.5, y_origin + (rows+0.5) * pixel_height, pixel_height)px, py = np.meshgrid(x, y)if v_name is None:v_name = os.path.splitext(os.path.split(rasterfile)[1])[0]dataset = {"x": px.ravel(),"y": py.ravel(),v_name: values.ravel()}df_temp = pd.DataFrame(dataset, dtype="float32")# 删除缺失值if nodata is None:nodata = df_temp[v_name].min()df_temp = df_temp[df_temp[v_name] != nodata]else:df_temp = df_temp[df_temp[v_name] != nodata]df_temp.index = range(len(df_temp))return df_tempif __name__ == "__main__":# 禁用科学计数法np.set_printoptions(suppress=True)pd.set_option('display.float_format', lambda x: '%.4f' % x)# 执行栅格转点,并计时s = time.time()# in_tif是输入栅格,刚才裁剪的结果in_tif = r"D:/work/0318/Suitability Raster files/Suitability Raster files/High_mask/high_banana_plaintain_mask.tif" outfile = rasterToPoints(in_tif, v_name="high_banana_plaintain") # v_name是你自己定义的栅格字段列名称outfile.to_csv("high_banana_plaintain.csv") # 导出csv文件e = time.time()print("time used {0}s".format(e-s))
成功了。
看看统计结果
cs = pd.read_csv('high_banana_plaintain.csv')
cs
Unnamed: 0 | x | y | high_banana_plaintain | |
---|---|---|---|---|
0 | 0 | 9.3750 | 37.2917 | 0.0000 |
1 | 1 | 9.4583 | 37.2917 | 0.0000 |
2 | 2 | 9.5417 | 37.2917 | 0.0000 |
3 | 3 | 9.6250 | 37.2917 | 0.0000 |
4 | 4 | 9.7083 | 37.2917 | 0.0000 |
… | … | … | … | … |
360807 | 360807 | 19.7083 | -34.7917 | 0.0000 |
360808 | 360808 | 19.7917 | -34.7917 | 0.0000 |
360809 | 360809 | 19.8750 | -34.7917 | 0.0000 |
360810 | 360810 | 19.9583 | -34.7917 | 0.0000 |
360811 | 360811 | 20.0417 | -34.7917 | 0.0000 |
360812 rows × 4 columns
很完美。
上一篇:在线考试系统